Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David H. Perlman is active.

Publication


Featured researches published by David H. Perlman.


Journal of Immunology | 2006

The Meningococcal Vaccine Candidate GNA1870 Binds the Complement Regulatory Protein Factor H and Enhances Serum Resistance

Guillermo Madico; Jo Anne Welsch; Lisa A. Lewis; Anne McNaughton; David H. Perlman; Catherine E. Costello; Jutamas Ngampasutadol; Ulrich Vogel; Dan M. Granoff; Sanjay Ram

Neisseria meningitidis binds factor H (fH), a key regulator of the alternative complement pathway. A ∼29 kD fH-binding protein expressed in the meningococcal outer membrane was identified by mass spectrometry as GNA1870, a lipoprotein currently under evaluation as a broad-spectrum meningococcal vaccine candidate. GNA1870 was confirmed as the fH ligand on intact bacteria by 1) abrogation of fH binding upon deleting GNA1870, and 2) blocking fH binding by anti-GNA1870 mAbs. fH bound to whole bacteria and purified rGNA1870 representing each of the three variant GNA1870 families. We showed that the amount of fH binding correlated with the level of bacterial GNA1870 expression. High levels of variant 1 GNA1870 expression (either by allelic replacement of gna1870 or by plasmid-driven high-level expression) in strains that otherwise were low-level GNA1870 expressers (and bound low amounts of fH by flow cytometry) restored high levels of fH binding. Diminished fH binding to the GNA1870 deletion mutants was accompanied by enhanced C3 binding and increased killing of the mutants. Conversely, high levels of GNA1870 expression and fH binding enhanced serum resistance. Our findings support the hypothesis that inhibiting the binding of a complement down-regulator protein to the neisserial surface by specific Ab may enhance intrinsic bactericidal activity of the Ab, resulting in two distinct mechanisms of Ab-mediated vaccine efficacy. These data provide further support for inclusion of this molecule in a meningococcal vaccine. To reflect the critical function of this molecule, we suggest calling it fH-binding protein.


Analytical Chemistry | 2009

Software tool for researching annotations of proteins: open-source protein annotation software with data visualization.

Vivek N. Bhatia; David H. Perlman; Catherine E. Costello; Mark E. McComb

In order that biological meaning may be derived and testable hypotheses may be built from proteomics experiments, assignments of proteins identified by mass spectrometry or other techniques must be supplemented with additional notation, such as information on known protein functions, protein-protein interactions, or biological pathway associations. Collecting, organizing, and interpreting this data often requires the input of experts in the biological field of study, in addition to the time-consuming search for and compilation of information from online protein databases. Furthermore, visualizing this bulk of information can be challenging due to the limited availability of easy-to-use and freely available tools for this process. In response to these constraints, we have undertaken the design of software to automate annotation and visualization of proteomics data in order to accelerate the pace of research. Here we present the Software Tool for Researching Annotations of Proteins (STRAP), a user-friendly, open-source C# application. STRAP automatically obtains gene ontology (GO) terms associated with proteins in a proteomics results ID list using the freely accessible UniProtKB and EBI GOA databases. Summarized in an easy-to-navigate tabular format, STRAP results include meta-information on the protein in addition to complementary GO terminology. Additionally, this information can be edited by the user so that in-house expertise on particular proteins may be integrated into the larger data set. STRAP provides a sortable tabular view for all terms, as well as graphical representations of GO-term association data in pie charts (biological process, cellular component, and molecular function) and bar charts (cross comparison of sample sets) to aid in the interpretation of large data sets and differential analyses experiments. Furthermore, proteins of interest may be exported as a unique FASTA-formatted file to allow for customizable re-searching of mass spectrometry data, and gene names corresponding to the proteins in the lists may be encoded in the Gaggle microformat for further characterization, including pathway analysis. STRAP, a tutorial, and the C# source code are freely available from http://cpctools.sourceforge.net.


Molecular & Cellular Proteomics | 2008

Amyloidogenic and Associated Proteins in Systemic Amyloidosis Proteome of Adipose Tissue

Francesca Lavatelli; David H. Perlman; Brian Spencer; Tatiana Prokaeva; Mark E. McComb; Roger Théberge; Lawreen H. Connors; Vittorio Bellotti; David C. Seldin; Giampaolo Merlini; Martha Skinner; Catherine E. Costello

In systemic amyloidoses, widespread deposition of protein as amyloid causes severe organ dysfunction. It is necessary to discriminate among the different forms of amyloid to design an appropriate therapeutic strategy. We developed a proteomics methodology utilizing two-dimensional polyacrylamide gel electrophoresis followed by matrix-assisted laser desorption/ionization mass spectrometry and peptide mass fingerprinting to directly characterize amyloid deposits in abdominal subcutaneous fat obtained by fine needle aspiration from patients diagnosed as having amyloidoses typed as immunoglobulin light chain or transthyretin. Striking differences in the two-dimensional gel proteomes of adipose tissue were observed between controls and patients and between the two types of patients with distinct, additional spots present in the patient specimens that could be assigned as the amyloidogenic proteins in full-length and truncated forms. In patients heterozygotic for transthyretin mutations, wild-type peptides and peptides containing amyloidogenic transthyretin variants were isolated in roughly equal amounts from the same protein spots, indicative of incorporation of both species into the deposits. Furthermore novel spots unrelated to the amyloidogenic proteins appeared in patient samples; some of these were identified as isoforms of serum amyloid P and apolipoprotein E, proteins that have been described previously to be associated with amyloid deposits. Finally changes in the normal expression pattern of resident adipose proteins, such as down-regulation of αB-crystallin, peroxiredoxin 6, and aldo-keto reductase I, were observed in apparent association with the presence of amyloid, although their levels did not strictly correlate with the grade of amyloid deposition. This proteomics approach not only provides a way to detect and unambiguously type the deposits in abdominal subcutaneous fat aspirates from patients with amyloidoses but it may also have the capability to generate new insights into the mechanism of the diseases by identifying novel proteins or protein post-translational modifications associated with amyloid infiltration.


Cell | 2014

The Architecture of a Scrambled Genome Reveals Massive Levels of Genomic Rearrangement during Development

Xiao Chen; John R. Bracht; Aaron David Goldman; Egor Dolzhenko; Derek M. Clay; Estienne C. Swart; David H. Perlman; Thomas G. Doak; Andrew Stuart; Chris T. Amemiya; Robert Sebra; Laura F. Landweber

Programmed DNA rearrangements in the single-celled eukaryote Oxytricha trifallax completely rewire its germline into a somatic nucleus during development. This elaborate, RNA-mediated pathway eliminates noncoding DNA sequences that interrupt gene loci and reorganizes the remaining fragments by inversions and permutations to produce functional genes. Here, we report the Oxytricha germline genome and compare it to the somatic genome to present a global view of its massive scale of genome rearrangements. The remarkably encrypted genome architecture contains >3,500 scrambled genes, as well as >800 predicted germline-limited genes expressed, and some posttranslationally modified, during genome rearrangements. Gene segments for different somatic loci often interweave with each other. Single gene segments can contribute to multiple, distinct somatic loci. Terminal precursor segments from neighboring somatic loci map extremely close to each other, often overlapping. This genome assembly provides a draft of a scrambled genome and a powerful model for studies of genome rearrangement.


Antioxidants & Redox Signaling | 2010

Redox Regulation of Sirtuin-1 by S-Glutathiolation

Rebecca Zee; Chris B. Yoo; David R. Pimentel; David H. Perlman; Joseph R. Burgoyne; Xiuyun Hou; Mark E. McComb; Catherine E. Costello; Richard A. Cohen; Markus Bachschmid

Sirtuin-1 (SIRT1) is an NAD(+)-dependent protein deacetylase that is sensitive to oxidative signals. Our purpose was to determine whether SIRT1 activity is sensitive to the low molecular weight nitrosothiol, S-nitrosoglutathione (GSNO), which can transduce oxidative signals into physiological responses. SIRT1 formed mixed disulfides with GSNO-Sepharose, and mass spectrometry identified several cysteines that are modified by GSNO, including Cys-67 which was S-glutathiolated. GSNO had no effect on basal SIRT1 deacetylase activity, but inhibited stimulation of activity by resveratrol (RSV) with an IC(50) of 69 microM. These observations indicate that S-glutathiolation of SIRT1 by low concentrations of reactive glutathione can modulate its enzymatic activity.


Thrombosis and Haemostasis | 2009

Immune versus thrombotic stimulation of platelets differentially regulates signalling pathways, intracellular protein-protein interactions, and α-granule release

Sybille Rex; Lea M. Beaulieu; David H. Perlman; Olga Vitseva; Price Blair; Mark E. McComb; Catherine E. Costello; Jane E. Freedman

In addition to haemostasis, platelets mediate inflammation and clearance of bacteria from the bloodstream. As with platelet-platelet interactions, platelet-bacteria interactions involve cytoskeletal rearrangements and release of granular content. Stimulation of the immune Toll-like receptor 2 (TLR2) on the platelet surface, activates phosphoinositide-3-kinase (PI3K) and causes platelet activation and platelet-dependent thrombosis. It remains unknown if platelet activation by immune versus thrombotic pathways leads to the differential regulation of signal transduction, protein-protein interactions, and alpha-granule release, and the physiological relevance of these potential differences. We investigated these processes after immune versus thrombotic platelet stimulation. We examined selected signalling pathways and found that phosphorylation kinetics of Akt, ERK1/2 and p38 differed dramatically between agonists. Next, we investigated platelet protein-protein interactions by mass spectrometry (MS)-based proteomics specifically targeting cytosolic factor XIIIa (FXIIIa) because of its function as a cytoskeleton-crosslinking protein whose binding partners have limited characterisation. Four FXIIIa-binding proteins were identified, two of which are novel interactions: FXIIIa-focal adhesion kinase (FAK) and FXIIIa-gelsolin. The binding of FAK to FXIIIa was found to be altered differentially by immune versus thrombotic stimulation. Lastly, we studied the effect of thrombin versus Pam(3)CSK(4) stimulation on alpha-granule release and observed differential release patterns for selected granule proteins and decreased fibrin clot formation compared with thrombin. The inhibition of PI3K caused a decrease in protein release after Pam(3)CSK(4)- but not after thrombin-stimulation. In summary, stimulation of platelets by either thrombotic or immune receptors leads to markedly different signalling responses and granular protein release consistent with differential contribution to coagulation and thrombosis.


Nature Chemical Biology | 2013

A pan-specific antibody for direct detection of protein histidine phosphorylation

Jung-Min Kee; Rob C. Oslund; David H. Perlman; Tom W. Muir

Despite its importance in central metabolism and bacterial cell signaling, protein histidine phosphorylation has remained elusive with respect to its extent and functional roles in biological systems due to the lack of adequate research tools. We report the development of the first pan-pHis antibody using a stable phosphohistidine (pHis) mimetic as the hapten. This antibody was successfully used in ELISA, Western blot, dot blot, immunoprecipitation, and in detection and identification of histidine-phosphorylated proteins from native cell lysates when coupled with mass spectrometric analysis. We also observed that protein pHis levels in E. coli lysates depend on carbon source and nitrogen availability in the growth media. In particular, we found that pHis levels on PpsA are sensitive to nitrogen availability in vivo and that α-ketoglutarate (α-KG) inhibits phosphotransfer from phosphorylated phosphoenolpyruvate synthase (PpsA) to pyruvate. We expect this antibody to open opportunities for investigating other pHis-proteins and their functions.


Science | 2016

Systems-level analysis of mechanisms regulating yeast metabolic flux

Sean R. Hackett; Vito R. T. Zanotelli; Wenxin Xu; Jonathan Goya; Junyoung O. Park; David H. Perlman; Patrick A. Gibney; David Botstein; John D. Storey; Joshua D. Rabinowitz

Quantitation of metabolic pathway regulation Although metabolic biochemical pathways are well understood, less is known about precisely how reaction rates or fluxes through the various enzymes are controlled. Hackett et al. developed a method to quantitate such regulatory influence in yeast. They monitored concentrations of metabolites, enzymes, and potential regulators by LC-MS/MS (liquid chromatography–tandem mass spectrometry) and isotope ratio measurements for 56 reactions, over 100 metabolites, and 370 metabolic enzymes in yeast in 25 different steady-state conditions. Bayesian analysis was used to examine the probability of regulatory interactions. Regulation of flux through the pathways was predominantly controlled by changes in the concentration of small-molecule metabolites rather than changes in enzyme abundance. The analysis also revealed previously unrecognized regulation between pathways. Science, this issue p. 432 Metabolomics, proteomics, and flux analysis are used to dissect quantitatively metabolic regulation in living yeast. INTRODUCTION Metabolism is among the most strongly conserved processes across all domains of life and is crucial for both bioengineering and disease research, yet we still have an unclear understanding of how metabolic rates (fluxes) are determined. Qualitatively, this deficiency involves missing knowledge of enzyme regulators. Quantitatively, it involves limited understanding of the relative contributions of enzyme and metabolite concentrations in controlling flux across physiological conditions. Addressing these gaps has been challenging because in vitro biochemical approaches lack the physiological context, whereas models of cellular metabolic dynamics have limited capacity for identifying or quantitating specific regulatory events because of overall model complexity. RATIONALE Flux through individual metabolic reactions is directly determined by the concentrations of enzyme, substrates, products, and any allosteric regulators, as captured quantitatively by a Michaelis-Menten–style reaction equation. Analogous to how experimental variation of reaction species in vitro allows for the inference of regulators and reaction equation kinetic parameters, physiological changes in flux entail a change in reaction species that can be used to determine reaction equations on the basis of cellular data. This requires measurement across multiple biological conditions of flux, enzyme concentrations, and metabolite concentrations. We reasoned that chemostat cultures could be used to induce predictable and strong flux changes, with changes in enzymes and metabolites measurable by proteomics and metabolomics. By directly relating cellular flux to the reaction species that determine it, we can carry out regulatory inference at the level of single metabolic reactions by using cellular data. An important benefit is that the physiological significance of any identified regulator is implicit from its role in determining cellular flux. RESULTS Here we introduce systematic identification of meaningful metabolic enzyme regulation (SIMMER). We measured fluxes, and metabolite and enzyme concentrations, in each of 25 yeast chemostats. For each of 56 reactions for which the flux, enzyme, and substrates were measured, we determined whether variation in measured flux could be explained by simple Michaelis-Menten kinetics. We also evaluated alternative models of each reaction’s kinetics that included a suite of allosteric regulators drawn from across all organisms. For 46 reactions, we were able to identify a useful kinetic model, with 17 reactions not including any regulation and 29 reactions being regulated by one to two allosteric regulators. Three previously unrecognized cross-pathway regulatory interactions were validated biochemically. These included inhibition of pyruvate kinase by citrate and inhibition of pyruvate decarboxylase by phenypyruvate. These metabolites accumulated and thereby curtailed glycolytic outflow and ethanol production in nitrogen-limited yeast. For well-supported reaction forms, we were able to determine the extent to which nutrient-based changes in flux were determined by changes in the concentrations of individual reaction species. We find that substrates are the most important determinant of fluxes in general, with enzymes and allosteric regulators having a comparably important role in the case of physiologically irreversible reactions. CONCLUSION By connecting changes in flux to their root cause, SIMMER parallels classic in vitro approaches, but it allows simultaneous testing of numerous regulators of many reactions under physiological conditions. Its application to yeast showed that changes in flux across nutrient conditions are predominantly due to metabolite, not enzyme, levels. Thus, yeast metabolism is substantially self-regulating. Integrative analysis of fluxes and metabolite and enzyme concentrations by SIMMER. Measured flux is related, on a reaction-by-reaction basis, to enzyme and metabolite concentrations through a Michaelis-Menten equation. The extent to which variation in flux across experimental conditions can be explained by the enzyme, substrates, and products is assessed. If unregulated kinetics disagrees with the measured flux, we test a set of possible allosteric regulators to determine which, if any, regulators are supported on the basis of improvement in fit. Cellular metabolic fluxes are determined by enzyme activities and metabolite abundances. Biochemical approaches reveal the impact of specific substrates or regulators on enzyme kinetics but do not capture the extent to which metabolite and enzyme concentrations vary across physiological states and, therefore, how cellular reactions are regulated. We measured enzyme and metabolite concentrations and metabolic fluxes across 25 steady-state yeast cultures. We then assessed the extent to which flux can be explained by a Michaelis-Menten relationship between enzyme, substrate, product, and potential regulator concentrations. This revealed three previously unrecognized instances of cross-pathway regulation, which we biochemically verified. One of these involved inhibition of pyruvate kinase by citrate, which accumulated and thereby curtailed glycolytic outflow in nitrogen-limited yeast. Overall, substrate concentrations were the strongest driver of the net rates of cellular metabolic reactions, with metabolite concentrations collectively having more than double the physiological impact of enzymes.


Journal of Virology | 2007

Regulation of Hepadnavirus Reverse Transcription by Dynamic Nucleocapsid Phosphorylation

Suresh H. Basagoudanavar; David H. Perlman; Jianming Hu

ABSTRACT Reverse transcription, an essential step in the life cycle of all retroelements, is a complex, multistep process whose regulation is not yet clearly understood. We have recently shown that reverse transcription in the pararetrovirus duck hepatitis B virus is associated with complete dephosphorylation of the viral core protein, which forms the nucleocapsid wherein reverse transcription takes place. Here we present a genetic study of the role of this dynamic nucleocapsid phosphorylation in regulating viral reverse transcription. Detailed analyses of the reverse transcription products synthesized within nucleocapsids composed of core phosphorylation site mutants revealed that alanine substitutions, mimicking the nonphosphorylated state, completely blocked reverse transcription at a very early stage. In contrast, aspartate substitutions, mimicking the phosphorylated state, allowed complete first-strand DNA synthesis but were severely defective in accumulating mature double-stranded DNA. The latter defect was due to a combination of mutant nucleocapsid instability during maturation and a block in mature second-strand DNA synthesis. Thus, the reversible phosphorylation of the nucleocapsids regulates the ordered progression of reverse transcription.


Circulation Research | 2009

Mechanistic Insights Into Nitrite-Induced Cardioprotection Using an Integrated Metabolomic/Proteomic Approach

David H. Perlman; Selena Bauer; Houman Ashrafian; Nathan S. Bryan; Maria Francisca Garcia-Saura; Chee Chew Lim; Bernadette O. Fernandez; Giuseppe Infusini; Mark E. McComb; Catherine E. Costello; Martin Feelisch

Nitrite has recently emerged as an important bioactive molecule, capable of conferring cardioprotection and a variety of other benefits in the cardiovascular system and elsewhere. The mechanisms by which it accomplishes these functions remain largely unclear. To characterize the dose response and corresponding cardiac sequelae of transient systemic elevations of nitrite, we assessed the time course of oxidation/nitros(yl)ation, as well as the metabolomic, proteomic, and associated functional changes in rat hearts following acute exposure to nitrite in vivo. Transient systemic nitrite elevations resulted in: (1) rapid formation of nitroso and nitrosyl species; (2) moderate short-term changes in cardiac redox status; (3) a pronounced increase in selective manifestations of long-term oxidative stress as evidenced by cardiac ascorbate oxidation, persisting long after changes in nitrite-related metabolites had normalized; (4) lasting reductions in glutathione oxidation (GSSG/GSH) and remarkably concordant nitrite-induced cardioprotection, which both followed a complex dose–response profile; and (5) significant nitrite-induced protein modifications (including phosphorylation) revealed by mass spectrometry-based proteomic studies. Altered proteins included those involved in metabolism (eg, aldehyde dehydrogenase 2, ubiquinone biosynthesis protein CoQ9, lactate dehydrogenase B), redox regulation (eg, protein disulfide isomerase A3), contractile function (eg, filamin-C), and serine/threonine kinase signaling (eg, protein kinase A R1α, protein phosphatase 2A A R1-α). Thus, brief elevations in plasma nitrite trigger a concerted cardioprotective response characterized by persistent changes in cardiac metabolism, redox stress, and alterations in myocardial signaling. These findings help elucidate possible mechanisms of nitrite-induced cardioprotection and have implications for nitrite dosing in therapeutic regimens.

Collaboration


Dive into the David H. Perlman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianming Hu

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge