Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark E. McComb is active.

Publication


Featured researches published by Mark E. McComb.


Analytical Chemistry | 2009

Software tool for researching annotations of proteins: open-source protein annotation software with data visualization.

Vivek N. Bhatia; David H. Perlman; Catherine E. Costello; Mark E. McComb

In order that biological meaning may be derived and testable hypotheses may be built from proteomics experiments, assignments of proteins identified by mass spectrometry or other techniques must be supplemented with additional notation, such as information on known protein functions, protein-protein interactions, or biological pathway associations. Collecting, organizing, and interpreting this data often requires the input of experts in the biological field of study, in addition to the time-consuming search for and compilation of information from online protein databases. Furthermore, visualizing this bulk of information can be challenging due to the limited availability of easy-to-use and freely available tools for this process. In response to these constraints, we have undertaken the design of software to automate annotation and visualization of proteomics data in order to accelerate the pace of research. Here we present the Software Tool for Researching Annotations of Proteins (STRAP), a user-friendly, open-source C# application. STRAP automatically obtains gene ontology (GO) terms associated with proteins in a proteomics results ID list using the freely accessible UniProtKB and EBI GOA databases. Summarized in an easy-to-navigate tabular format, STRAP results include meta-information on the protein in addition to complementary GO terminology. Additionally, this information can be edited by the user so that in-house expertise on particular proteins may be integrated into the larger data set. STRAP provides a sortable tabular view for all terms, as well as graphical representations of GO-term association data in pie charts (biological process, cellular component, and molecular function) and bar charts (cross comparison of sample sets) to aid in the interpretation of large data sets and differential analyses experiments. Furthermore, proteins of interest may be exported as a unique FASTA-formatted file to allow for customizable re-searching of mass spectrometry data, and gene names corresponding to the proteins in the lists may be encoded in the Gaggle microformat for further characterization, including pathway analysis. STRAP, a tutorial, and the C# source code are freely available from http://cpctools.sourceforge.net.


Journal of Cell Biology | 2003

The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex

Ryan Ratts; Eric A. Berg; Clare Blue; Mark E. McComb; Cathy E. Costello; Johanna C. vanderSpek; John R. Murphy

In vitro delivery of the diphtheria toxin catalytic (C) domain from the lumen of purified early endosomes to the external milieu requires the addition of both ATP and a cytosolic translocation factor (CTF) complex. Using the translocation of C-domain ADP-ribosyltransferase activity across the endosomal membrane as an assay, the CTF complex activity was 650–800-fold purified from human T cell and yeast extracts, respectively. The chaperonin heat shock protein (Hsp) 90 and thioredoxin reductase were identified by mass spectrometry sequencing in CTF complexes purified from both human T cell and yeast. Further analysis of the role played by these two proteins with specific inhibitors, both in the in vitro translocation assay and in intact cell toxicity assays, has demonstrated their essential role in the productive delivery of the C-domain from the lumen of early endosomes to the external milieu. These results confirm and extend earlier observations of diphtheria toxin C-domain unfolding and refolding that must occur before and after vesicle membrane translocation. In addition, results presented here demonstrate that thioredoxin reductase activity plays an essential role in the cytosolic release of the C-domain. Because analogous CTF complexes have been partially purified from mammalian and yeast cell extracts, results presented here suggest a common and fundamental mechanism for C-domain translocation across early endosomal membranes.


Molecular & Cellular Proteomics | 2004

Isotope-coded Affinity Tag Approach to Identify and Quantify Oxidant-sensitive Protein Thiols

Mahadevan Sethuraman; Mark E. McComb; Tyler Heibeck; Catherine E. Costello; Richard A. Cohen

An approach is described for identifying and quantifying oxidant-sensitive protein thiols using a cysteine-specific, acid-cleavable isotope-coded affinity tag (ICAT) reagent (Applied Biosystems, Foster City, CA). The approach is based on the fact that only free cysteine thiols are susceptible to labeling by the iodoacetamide-based ICAT reagent, and that mass spectrometry can be used to quantitate the relative labeling of free thiols. To validate our approach, creatine kinase with four cysteine residues, one of which is oxidant-sensitive, was chosen as an experimental model. ICAT-labeled peptides derived from creatine kinase were used to evaluate the relative abundance of the free thiols in samples subjected (or not) to treatment with hydrogen peroxide. As predicted, hydrogen peroxide decreased the relative abundance of the unmodified oxidant-sensitive thiol residue of cysteine-283 in creatine kinase, providing proof of principle that an ICAT-based quantitative mass spectrometry approach can be used to identify and quantify oxidation of cysteine thiols. This approach opens an avenue for proteomics studies of the redox state of protein thiols.


Molecular & Cellular Proteomics | 2008

Amyloidogenic and Associated Proteins in Systemic Amyloidosis Proteome of Adipose Tissue

Francesca Lavatelli; David H. Perlman; Brian Spencer; Tatiana Prokaeva; Mark E. McComb; Roger Théberge; Lawreen H. Connors; Vittorio Bellotti; David C. Seldin; Giampaolo Merlini; Martha Skinner; Catherine E. Costello

In systemic amyloidoses, widespread deposition of protein as amyloid causes severe organ dysfunction. It is necessary to discriminate among the different forms of amyloid to design an appropriate therapeutic strategy. We developed a proteomics methodology utilizing two-dimensional polyacrylamide gel electrophoresis followed by matrix-assisted laser desorption/ionization mass spectrometry and peptide mass fingerprinting to directly characterize amyloid deposits in abdominal subcutaneous fat obtained by fine needle aspiration from patients diagnosed as having amyloidoses typed as immunoglobulin light chain or transthyretin. Striking differences in the two-dimensional gel proteomes of adipose tissue were observed between controls and patients and between the two types of patients with distinct, additional spots present in the patient specimens that could be assigned as the amyloidogenic proteins in full-length and truncated forms. In patients heterozygotic for transthyretin mutations, wild-type peptides and peptides containing amyloidogenic transthyretin variants were isolated in roughly equal amounts from the same protein spots, indicative of incorporation of both species into the deposits. Furthermore novel spots unrelated to the amyloidogenic proteins appeared in patient samples; some of these were identified as isoforms of serum amyloid P and apolipoprotein E, proteins that have been described previously to be associated with amyloid deposits. Finally changes in the normal expression pattern of resident adipose proteins, such as down-regulation of αB-crystallin, peroxiredoxin 6, and aldo-keto reductase I, were observed in apparent association with the presence of amyloid, although their levels did not strictly correlate with the grade of amyloid deposition. This proteomics approach not only provides a way to detect and unambiguously type the deposits in abdominal subcutaneous fat aspirates from patients with amyloidoses but it may also have the capability to generate new insights into the mechanism of the diseases by identifying novel proteins or protein post-translational modifications associated with amyloid infiltration.


Molecular & Cellular Proteomics | 2013

Interlaboratory Study on Differential Analysis of Protein Glycosylation by Mass Spectrometry: the ABRF Glycoprotein Research Multi-Institutional Study 2012

Nancy Leymarie; Paula J. Griffin; Karen R. Jonscher; Daniel Kolarich; Ron Orlando; Mark E. McComb; Joseph Zaia; Jennifer T Aguilan; William R. Alley; Friederich Altmann; Lauren E. Ball; Lipika Basumallick; Carthene R. Bazemore-Walker; Henning N. Behnken; Michael A. Blank; Kristy J. Brown; Svenja-Catharina Bunz; Christopher W. Cairo; John F. Cipollo; Rambod Daneshfar; Heather Desaire; Richard R. Drake; Eden P. Go; Radoslav Goldman; Clemens Gruber; Adnan Halim; Yetrib Hathout; Paul J. Hensbergen; D. Horn; Deanna C. Hurum

One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods.


Blood | 2013

The aryl hydrocarbon receptor directs hematopoietic progenitor cell expansion and differentiation

Brenden W. Smith; Sarah S. Rozelle; Amy Leung; Jessalyn Ubellacker; Ashley Parks; Shirley K. Nah; Deborah L. French; Paul Gadue; Stefano Monti; David H.K. Chui; Martin H. Steinberg; Alan D. Michelson; Roger Théberge; Mark E. McComb; Catherine E. Costello; Darrell N. Kotton; Gustavo Mostoslavsky; David H. Sherr; George J. Murphy

The evolutionarily conserved aryl hydrocarbon receptor (AhR) has been studied for its role in environmental chemical-induced toxicity. However, recent studies have demonstrated that the AhR may regulate the hematopoietic and immune systems during development in a cell-specific manner. These results, together with the absence of an in vitro model system enabling production of large numbers of primary human hematopoietic progenitor cells (HPs) capable of differentiating into megakaryocyte- and erythroid-lineage cells, motivated us to determine if AhR modulation could facilitate both progenitor cell expansion and megakaryocyte and erythroid cell differentiation. Using a novel, pluripotent stem cell-based, chemically-defined, serum and feeder cell-free culture system, we show that the AhR is expressed in HPs and that, remarkably, AhR activation drives an unprecedented expansion of HPs, megakaryocyte-lineage cells, and erythroid-lineage cells. Further AhR modulation within rapidly expanding progenitor cell populations directs cell fate, with chronic AhR agonism permissive to erythroid differentiation and acute antagonism favoring megakaryocyte specification. These results highlight the development of a new Good Manufacturing Practice-compliant platform for generating virtually unlimited numbers of human HPs with which to scrutinize red blood cell and platelet development, including the assessment of the role of the AhR critical cell fate decisions during hematopoiesis.


Antioxidants & Redox Signaling | 2010

Redox Regulation of Sirtuin-1 by S-Glutathiolation

Rebecca Zee; Chris B. Yoo; David R. Pimentel; David H. Perlman; Joseph R. Burgoyne; Xiuyun Hou; Mark E. McComb; Catherine E. Costello; Richard A. Cohen; Markus Bachschmid

Sirtuin-1 (SIRT1) is an NAD(+)-dependent protein deacetylase that is sensitive to oxidative signals. Our purpose was to determine whether SIRT1 activity is sensitive to the low molecular weight nitrosothiol, S-nitrosoglutathione (GSNO), which can transduce oxidative signals into physiological responses. SIRT1 formed mixed disulfides with GSNO-Sepharose, and mass spectrometry identified several cysteines that are modified by GSNO, including Cys-67 which was S-glutathiolated. GSNO had no effect on basal SIRT1 deacetylase activity, but inhibited stimulation of activity by resveratrol (RSV) with an IC(50) of 69 microM. These observations indicate that S-glutathiolation of SIRT1 by low concentrations of reactive glutathione can modulate its enzymatic activity.


Thrombosis and Haemostasis | 2009

Immune versus thrombotic stimulation of platelets differentially regulates signalling pathways, intracellular protein-protein interactions, and α-granule release

Sybille Rex; Lea M. Beaulieu; David H. Perlman; Olga Vitseva; Price Blair; Mark E. McComb; Catherine E. Costello; Jane E. Freedman

In addition to haemostasis, platelets mediate inflammation and clearance of bacteria from the bloodstream. As with platelet-platelet interactions, platelet-bacteria interactions involve cytoskeletal rearrangements and release of granular content. Stimulation of the immune Toll-like receptor 2 (TLR2) on the platelet surface, activates phosphoinositide-3-kinase (PI3K) and causes platelet activation and platelet-dependent thrombosis. It remains unknown if platelet activation by immune versus thrombotic pathways leads to the differential regulation of signal transduction, protein-protein interactions, and alpha-granule release, and the physiological relevance of these potential differences. We investigated these processes after immune versus thrombotic platelet stimulation. We examined selected signalling pathways and found that phosphorylation kinetics of Akt, ERK1/2 and p38 differed dramatically between agonists. Next, we investigated platelet protein-protein interactions by mass spectrometry (MS)-based proteomics specifically targeting cytosolic factor XIIIa (FXIIIa) because of its function as a cytoskeleton-crosslinking protein whose binding partners have limited characterisation. Four FXIIIa-binding proteins were identified, two of which are novel interactions: FXIIIa-focal adhesion kinase (FAK) and FXIIIa-gelsolin. The binding of FAK to FXIIIa was found to be altered differentially by immune versus thrombotic stimulation. Lastly, we studied the effect of thrombin versus Pam(3)CSK(4) stimulation on alpha-granule release and observed differential release patterns for selected granule proteins and decreased fibrin clot formation compared with thrombin. The inhibition of PI3K caused a decrease in protein release after Pam(3)CSK(4)- but not after thrombin-stimulation. In summary, stimulation of platelets by either thrombotic or immune receptors leads to markedly different signalling responses and granular protein release consistent with differential contribution to coagulation and thrombosis.


Biomaterials | 2000

Characterization of plasma proteins adsorbed onto biomaterials. By MALDI-TOFMS.

Richard D. Oleschuk; Mark E. McComb; A. Chow; Werner Ens; Kenneth G. Standing; Hélène Perreault; Yves Marois; Martin W. King

The analysis of plasma proteins adsorbed onto a polyurethane (PU) biomaterial was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). This article marks the first study on MALDI-TOFMS analysis of multiple proteins adsorbed from plasma, in vitro, onto the surface of a biomaterial to easily enable their characterization. Plasma standards from three different hosts were placed in contact with non-porous PU, a model biomaterial. Following the use of washing protocols developed in our laboratory, the biomaterial was analyzed, directly, with MALDI-TOFMS. Proteins with molecular weights (Mr) ranging from ca. 6.5 to 150 kDa were observed in the mass spectra and characterized upon comparison with proteins of known Mr. The proteins observed were tentatively identified as those known to adsorb onto PU, both in vitro and in vivo. In an attempt to model in vivo sorption, the PU biomaterial was exposed to freshly collected canine plasma, in vitro, for different lengths of time. Corresponding MALDI-TOFMS spectra displayed increasing protein signal for a number of different proteins with increasing times of exposure to plasma. This method provided qualitative and semi-quantitative analysis of the proteins adsorbed onto the biomaterial surface.


Circulation Research | 2009

Mechanistic Insights Into Nitrite-Induced Cardioprotection Using an Integrated Metabolomic/Proteomic Approach

David H. Perlman; Selena Bauer; Houman Ashrafian; Nathan S. Bryan; Maria Francisca Garcia-Saura; Chee Chew Lim; Bernadette O. Fernandez; Giuseppe Infusini; Mark E. McComb; Catherine E. Costello; Martin Feelisch

Nitrite has recently emerged as an important bioactive molecule, capable of conferring cardioprotection and a variety of other benefits in the cardiovascular system and elsewhere. The mechanisms by which it accomplishes these functions remain largely unclear. To characterize the dose response and corresponding cardiac sequelae of transient systemic elevations of nitrite, we assessed the time course of oxidation/nitros(yl)ation, as well as the metabolomic, proteomic, and associated functional changes in rat hearts following acute exposure to nitrite in vivo. Transient systemic nitrite elevations resulted in: (1) rapid formation of nitroso and nitrosyl species; (2) moderate short-term changes in cardiac redox status; (3) a pronounced increase in selective manifestations of long-term oxidative stress as evidenced by cardiac ascorbate oxidation, persisting long after changes in nitrite-related metabolites had normalized; (4) lasting reductions in glutathione oxidation (GSSG/GSH) and remarkably concordant nitrite-induced cardioprotection, which both followed a complex dose–response profile; and (5) significant nitrite-induced protein modifications (including phosphorylation) revealed by mass spectrometry-based proteomic studies. Altered proteins included those involved in metabolism (eg, aldehyde dehydrogenase 2, ubiquinone biosynthesis protein CoQ9, lactate dehydrogenase B), redox regulation (eg, protein disulfide isomerase A3), contractile function (eg, filamin-C), and serine/threonine kinase signaling (eg, protein kinase A R1α, protein phosphatase 2A A R1-α). Thus, brief elevations in plasma nitrite trigger a concerted cardioprotective response characterized by persistent changes in cardiac metabolism, redox stress, and alterations in myocardial signaling. These findings help elucidate possible mechanisms of nitrite-induced cardioprotection and have implications for nitrite dosing in therapeutic regimens.

Collaboration


Dive into the Mark E. McComb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen A. Whelan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge