Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Halter is active.

Publication


Featured researches published by David Halter.


The ISME Journal | 2011

Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics

Philippe N. Bertin; Audrey Heinrich-Salmeron; Eric Pelletier; Florence Goulhen-Chollet; Florence Arsène-Ploetze; Sebastien Gallien; Béatrice Lauga; Corinne Casiot; Alexandra Calteau; David Vallenet; Violaine Bonnefoy; Odile Bruneel; Béatrice Chane-Woon-Ming; Jessica Cleiss-Arnold; Robert Duran; Françoise Elbaz-Poulichet; Nuria Fonknechten; Ludovic Giloteaux; David Halter; Sandrine Koechler; Marie Marchal; Damien Mornico; Christine Schaeffer; Adam Alexander Thil Smith; Alain Van Dorsselaer; Jean Weissenbach; Claudine Médigue; Denis Le Paslier

By their metabolic activities, microorganisms have a crucial role in the biogeochemical cycles of elements. The complete understanding of these processes requires, however, the deciphering of both the structure and the function, including synecologic interactions, of microbial communities. Using a metagenomic approach, we demonstrated here that an acid mine drainage highly contaminated with arsenic is dominated by seven bacterial strains whose genomes were reconstructed. Five of them represent yet uncultivated bacteria and include two strains belonging to a novel bacterial phylum present in some similar ecosystems, and which was named ‘Candidatus Fodinabacter communificans.’ Metaproteomic data unravelled several microbial capabilities expressed in situ, such as iron, sulfur and arsenic oxidation that are key mechanisms in biomineralization, or organic nutrient, amino acid and vitamin metabolism involved in synthrophic associations. A statistical analysis of genomic and proteomic data and reverse transcriptase–PCR experiments allowed us to build an integrated model of the metabolic interactions that may be of prime importance in the natural attenuation of such anthropized ecosystems.


Applied and Environmental Microbiology | 2011

Unsuspected diversity of arsenite-oxidizing bacteria as revealed by widespread distribution of the aoxB gene in prokaryotes.

Audrey Heinrich-Salmeron; Audrey Cordi; Céline Brochier-Armanet; David Halter; Christophe Pagnout; Elham Abbaszadeh-fard; Didier Montaut; Fabienne Séby; Philippe N. Bertin; Pascale Bauda; Florence Arsène-Ploetze

ABSTRACT In this study, new strains were isolated from an environment with elevated arsenic levels, Sainte-Marie-aux-Mines (France), and the diversity of aoxB genes encoding the arsenite oxidase large subunit was investigated. The distribution of bacterial aoxB genes is wider than what was previously thought. AoxB subfamilies characterized by specific signatures were identified. An exhaustive analysis of AoxB sequences from this study and from public databases shows that horizontal gene transfer has likely played a role in the spreading of aoxB in prokaryotic communities.


Research in Microbiology | 2011

Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments

David Halter; Audrey Cordi; Simonetta Gribaldo; Sebastien Gallien; Florence Goulhen-Chollet; Audrey Heinrich-Salmeron; Christine Carapito; Christophe Pagnout; Didier Montaut; Fabienne Séby; Alain Van Dorsselaer; Christine Schaeffer; Philippe N. Bertin; Pascale Bauda; Florence Arsène-Ploetze

Arsenic-resistant prokaryote diversity is far from being exhaustively explored. In this study, the arsenic-adapted prokaryotic community present in a moderately arsenic-contaminated site near Sainte-Marie-aux-Mines (France) was characterized, using metaproteomic and 16S rRNA-encoding gene amplification. High prokaryotic diversity was observed, with a majority of Proteobacteria, Acidobacteria and Bacteroidetes, and a large archaeal community comprising Euryarchaeaota and Thaumarchaeota. Metaproteomic analysis revealed that Proteobacteria, Planctomycetes and Cyanobacteria are among the active bacteria in this ecosystem. Taken together, these results highlight the unsuspected high diversity of the arsenic-adapted prokaryotic community, with some phyla never having been described in highly arsenic-exposed sites.


Applied Microbiology and Biotechnology | 2012

Surface properties and intracellular speciation revealed an original adaptive mechanism to arsenic in the acid mine drainage bio-indicator Euglena mutabilis

David Halter; Corinne Casiot; Hermann J. Heipieper; Frédéric Plewniak; Marie Marchal; Stéphane Simon; Florence Arsène-Ploetze; Philippe N. Bertin

Euglena mutabilis is a protist ubiquitously found in extreme environments such as acid mine drainages which are often rich in arsenic. The response of E. mutabilis to this metalloid was compared to that of Euglena gracilis, a protist not found in such environments. Membrane fatty acid composition, cell surface properties, arsenic accumulation kinetics, and intracellular arsenic speciation were determined. The results revealed a modification in fatty acid composition leading to an increased membrane fluidity in both Euglena species under sublethal arsenic concentrations exposure. This increased membrane fluidity correlated to an induced gliding motility observed in E. mutabilis in the presence of this metalloid but did not affect the flagellar dependent motility of E. gracilis. Moreover, when compared to E. gracilis, E. mutabilis showed highly hydrophobic cell surface properties and a higher tolerance to water-soluble arsenical compounds but not to hydrophobic ones. Finally, E. mutabilis showed a lower accumulation of total arsenic in the intracellular compartment and an absence of arsenic methylated species in contrast to E. gracilis. Taken together, our results revealed the existence of a specific arsenical response of E. mutabilis that may play a role in its hypertolerance to this toxic metalloid.


The ISME Journal | 2012

In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis

David Halter; Florence Goulhen-Chollet; Sebastien Gallien; Corinne Casiot; Jérôme Hamelin; Françoise Gilard; Dimitri Heintz; Christine Schaeffer; Christine Carapito; Alain Van Dorsselaer; Guillaume Tcherkez; Florence Arsène-Ploetze; Philippe N. Bertin

Euglena mutabilis is a photosynthetic protist found in acidic aquatic environments such as peat bogs, volcanic lakes and acid mine drainages (AMDs). Through its photosynthetic metabolism, this protist is supposed to have an important role in primary production in such oligotrophic ecosystems. Nevertheless, the exact contribution of E. mutabilis in organic matter synthesis remains unclear and no evidence of metabolite secretion by this protist has been established so far. Here we combined in situ proteo-metabolomic approaches to determine the nature of the metabolites accumulated by this protist or potentially secreted into an AMD. Our results revealed that the secreted metabolites are represented by a large number of amino acids, polyamine compounds, urea and some sugars but no fatty acids, suggesting a selective organic matter contribution in this ecosystem. Such a production may have a crucial impact on the bacterial community present on the study site, as it has been suggested previously that prokaryotes transport and recycle in situ most of the metabolites secreted by E. mutabilis. Consequently, this protist may have an indirect but important role in AMD ecosystems but also in other ecological niches often described as nitrogen-limited.


PLOS ONE | 2011

Subinhibitory Arsenite Concentrations Lead to Population Dispersal in Thiomonas sp.

Marie Marchal; Romain Briandet; David Halter; Sandrine Koechler; Michael S. DuBow; Marie-Claire Lett; Philippe N. Bertin

Biofilms represent the most common microbial lifestyle, allowing the survival of microbial populations exposed to harsh environmental conditions. Here, we show that the biofilm development of a bacterial species belonging to the Thiomonas genus, frequently found in arsenic polluted sites and playing a key role in arsenic natural remediation, is markedly modified when exposed to subinhibitory doses of this toxic element. Indeed, arsenite [As(III)] exposure led to a considerable impact on biofilm maturation by strongly increasing the extracellular matrix synthesis and by promoting significant cell death and lysis within microcolonies. These events were followed by the development of complex 3D-biofilm structures and subsequently by the dispersal of remobilized cells observed inside the previously formed hollow voids. Our results demonstrate that this biofilm community responds to arsenite stress in a multimodal way, enhancing both survival and dispersal. Addressing this complex bacterial response to As(III) stress, which might be used by other microorganisms under various adverse conditions, may be essential to understand how Thiomonas strains persist in extreme environments.


Journal of Experimental Botany | 2015

Genetic diversity of stilbene metabolism in Vitis sylvestris

Dong Duan; David Halter; Raymonde Baltenweck; Christine Tisch; Viktoria Tröster; Andreas Kortekamp; Philippe Hugueney; Peter Nick

Highlight We show that the ancestor of cultivated grapevine harbours genetic factors that increase the inducibility of stilbenes correlated with increased resistance to the important pathogen grapevine downy mildew.


Environmental Microbiology | 2015

Arsenic hypertolerance in the protist Euglena mutabilis is mediated by specific transporters and functional integrity maintenance mechanisms.

David Halter; Jérémy Andres; Frédéric Plewniak; Julie Poulain; Corinne Da Silva; Florence Arsène-Ploetze; Philippe N. Bertin

Arsenic is a toxic metalloid known to cause multiple and severe cellular damages, including lipid peroxidation, protein misfolding, mutagenesis and double and single-stranded DNA breaks. Thus, exposure to this compound is lethal for most organisms but some species such as the photosynthetic protist Euglena mutabilis are able to cope with very high concentrations of this metalloid. Our comparative transcriptomic approaches performed on both an arsenic hypertolerant protist, i.e. E. mutabilis, and a more sensitive one, i.e. E. gracilis, revealed multiple mechanisms involved in arsenic tolerance. Indeed, E. mutabilis prevents efficiently the accumulation of arsenic in the cell through the expression of several transporters. More surprisingly, this protist induced the expression of active DNA reparation and protein turnover mechanisms, which allow E. mutabilis to maintain functional integrity of the cell under challenging conditions. Our observations suggest that this protist has acquired specific functions regarding arsenic and has developed an original metabolism to cope with acid mine drainages-related stresses.


Frontiers in Microbiology | 2015

Thiomonas sp. CB2 is able to degrade urea and promote toxic metal precipitation in acid mine drainage waters supplemented with urea.

Julien Farasin; Jérémy Andres; Corinne Casiot; Valérie Barbe; Jacques Faerber; David Halter; Dimitri Heintz; Sandrine Koechler; Didier Lièvremont; Raphaël Lugan; Marie Marchal; Frédéric Plewniak; Fabienne Séby; Philippe N. Bertin; Florence Arsène-Ploetze

The acid mine drainage (AMD) in Carnoulès (France) is characterized by the presence of toxic metals such as arsenic. Several bacterial strains belonging to the Thiomonas genus, which were isolated from this AMD, are able to withstand these conditions. Their genomes carry several genomic islands (GEIs), which are known to be potentially advantageous in some particular ecological niches. This study focused on the role of the “urea island” present in the Thiomonas CB2 strain, which carry the genes involved in urea degradation processes. First, genomic comparisons showed that the genome of Thiomonas sp. CB2, which is able to degrade urea, contains a urea genomic island which is incomplete in the genome of other strains showing no urease activity. The urease activity of Thiomonas sp. CB2 enabled this bacterium to maintain a neutral pH in cell cultures in vitro and prevented the occurrence of cell death during the growth of the bacterium in a chemically defined medium. In AMD water supplemented with urea, the degradation of urea promotes iron, aluminum and arsenic precipitation. Our data show that ureC was expressed in situ, which suggests that the ability to degrade urea may be expressed in some Thiomonas strains in AMD, and that this urease activity may contribute to their survival in contaminated environments.


Scientific Reports | 2018

Link between carrot leaf secondary metabolites and resistance to Alternaria dauci

Claude Koutouan; Valérie Le Clerc; Raymonde Baltenweck; Patricia Claudel; David Halter; Philippe Hugueney; Latifa Hamama; Anita Suel; Sébastien Huet; Marie-Hélène Bouvet Merlet; Mathilde Briard

Alternaria Leaf Blight (ALB), caused by the fungus Alternaria dauci, is the most damaging foliar disease affecting carrots (Daucus carota). In order to identify compounds potentially linked to the resistance to A. dauci, we have used a combination of targeted and non-targeted metabolomics to compare the leaf metabolome of four carrot genotypes with different resistance levels. Targeted analyses were focused on terpene volatiles, while total leaf methanolic extracts were subjected to non-targeted analyses using liquid chromatography couple to high-resolution mass spectrometry. Differences in the accumulation of major metabolites were highlighted among genotypes and some of these metabolites were identified as potentially involved in resistance or susceptibility. A bulk segregant analysis on F3 progenies obtained from a cross between one of the resistant genotypes and a susceptible one, confirmed or refuted the hypothesis that the metabolites differentially accumulated by these two parents could be linked to resistance.

Collaboration


Dive into the David Halter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corinne Casiot

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Marie Marchal

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Schaeffer

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge