Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florence Arsène-Ploetze is active.

Publication


Featured researches published by Florence Arsène-Ploetze.


PLOS Genetics | 2005

A tale of two oxidation states: bacterial colonization of arsenic-rich environments.

Daniel Muller; Claudine Médigue; Sandrine Koechler; Valérie Barbe; Mohamed Barakat; Emmanuel Talla; Violaine Bonnefoy; Evelyne Krin; Florence Arsène-Ploetze; Christine Carapito; Michael Chandler; Benoit Cournoyer; Stéphane Cruveiller; Caroline Dossat; Simon Duval; Michaël Heymann; Emmanuelle Leize; Aurélie Lieutaud; Didier Lièvremont; Yuko Makita; Sophie Mangenot; Wolfgang Nitschke; Philippe Ortet; Nicolas Perdrial; Barbara Schoepp; Patricia Siguier; Diliana D. Simeonova; Zoé Rouy; Béatrice Segurens; Evelyne Turlin

Microbial biotransformations have a major impact on contamination by toxic elements, which threatens public health in developing and industrial countries. Finding a means of preserving natural environments—including ground and surface waters—from arsenic constitutes a major challenge facing modern society. Although this metalloid is ubiquitous on Earth, thus far no bacterium thriving in arsenic-contaminated environments has been fully characterized. In-depth exploration of the genome of the β-proteobacterium Herminiimonas arsenicoxydans with regard to physiology, genetics, and proteomics, revealed that it possesses heretofore unsuspected mechanisms for coping with arsenic. Aside from multiple biochemical processes such as arsenic oxidation, reduction, and efflux, H. arsenicoxydans also exhibits positive chemotaxis and motility towards arsenic and metalloid scavenging by exopolysaccharides. These observations demonstrate the existence of a novel strategy to efficiently colonize arsenic-rich environments, which extends beyond oxidoreduction reactions. Such a microbial mechanism of detoxification, which is possibly exploitable for bioremediation applications of contaminated sites, may have played a crucial role in the occupation of ancient ecological niches on earth.


The ISME Journal | 2011

Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics

Philippe N. Bertin; Audrey Heinrich-Salmeron; Eric Pelletier; Florence Goulhen-Chollet; Florence Arsène-Ploetze; Sebastien Gallien; Béatrice Lauga; Corinne Casiot; Alexandra Calteau; David Vallenet; Violaine Bonnefoy; Odile Bruneel; Béatrice Chane-Woon-Ming; Jessica Cleiss-Arnold; Robert Duran; Françoise Elbaz-Poulichet; Nuria Fonknechten; Ludovic Giloteaux; David Halter; Sandrine Koechler; Marie Marchal; Damien Mornico; Christine Schaeffer; Adam Alexander Thil Smith; Alain Van Dorsselaer; Jean Weissenbach; Claudine Médigue; Denis Le Paslier

By their metabolic activities, microorganisms have a crucial role in the biogeochemical cycles of elements. The complete understanding of these processes requires, however, the deciphering of both the structure and the function, including synecologic interactions, of microbial communities. Using a metagenomic approach, we demonstrated here that an acid mine drainage highly contaminated with arsenic is dominated by seven bacterial strains whose genomes were reconstructed. Five of them represent yet uncultivated bacteria and include two strains belonging to a novel bacterial phylum present in some similar ecosystems, and which was named ‘Candidatus Fodinabacter communificans.’ Metaproteomic data unravelled several microbial capabilities expressed in situ, such as iron, sulfur and arsenic oxidation that are key mechanisms in biomineralization, or organic nutrient, amino acid and vitamin metabolism involved in synthrophic associations. A statistical analysis of genomic and proteomic data and reverse transcriptase–PCR experiments allowed us to build an integrated model of the metabolic interactions that may be of prime importance in the natural attenuation of such anthropized ecosystems.


Applied Microbiology and Biotechnology | 2013

Bacterial metabolism of environmental arsenic--mechanisms and biotechnological applications.

Martin C. Kruger; Philippe N. Bertin; Hermann J. Heipieper; Florence Arsène-Ploetze

Arsenic causes threats for environmental and human health in numerous places around the world mainly due to its carcinogenic potential at low doses. Removing arsenic from contaminated sites is hampered by the occurrence of several oxidation states with different physicochemical properties. The actual state of arsenic strongly depends on its environment whereby microorganisms play important roles in its geochemical cycle. Due to its toxicity, nearly all organisms possess metabolic mechanisms to resist its hazardous effects, mainly by active extrusion, but also by extracellular precipitation, chelation, and intracellular sequestration. Some microbes are even able to actively use various arsenic compounds in their metabolism, either as an electron donor or as a terminal electron acceptor for anaerobic respiration. Some microorganisms can also methylate inorganic arsenic, probably as a resistance mechanism, or demethylate organic arsenicals. Bioavailability of arsenic in water and sediments is strongly influenced by such microbial activities. Therefore, understanding microbial reactions to arsenic is of importance for the development of technologies for improved bioremediation of arsenic-contaminated waters and environments. This review gives an overview of the current knowledge on bacterial interactions with arsenic and on biotechnologies for its detoxification and removal.


PLOS Genetics | 2010

Structure, Function, and Evolution of the Thiomonas spp. Genome

Florence Arsène-Ploetze; Sandrine Koechler; Marie Marchal; Jean-Yves Coppée; Michael Chandler; Violaine Bonnefoy; Céline Brochier-Armanet; Mohamed Barakat; Valérie Barbe; Fabienne Battaglia-Brunet; Odile Bruneel; Christopher G. Bryan; Jessica Cleiss-Arnold; Stéphane Cruveiller; Mathieu Erhardt; Audrey Heinrich-Salmeron; Florence Hommais; Catherine Joulian; Evelyne Krin; Aurélie Lieutaud; Didier Lièvremont; Caroline Michel; Daniel Muller; Philippe Ortet; Caroline Proux; Patricia Siguier; David Roche; Zoé Rouy; Grégory Salvignol; Djamila Slyemi

Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live.


Applied and Environmental Microbiology | 2011

Unsuspected diversity of arsenite-oxidizing bacteria as revealed by widespread distribution of the aoxB gene in prokaryotes.

Audrey Heinrich-Salmeron; Audrey Cordi; Céline Brochier-Armanet; David Halter; Christophe Pagnout; Elham Abbaszadeh-fard; Didier Montaut; Fabienne Séby; Philippe N. Bertin; Pascale Bauda; Florence Arsène-Ploetze

ABSTRACT In this study, new strains were isolated from an environment with elevated arsenic levels, Sainte-Marie-aux-Mines (France), and the diversity of aoxB genes encoding the arsenite oxidase large subunit was investigated. The distribution of bacterial aoxB genes is wider than what was previously thought. AoxB subfamilies characterized by specific signatures were identified. An exhaustive analysis of AoxB sequences from this study and from public databases shows that horizontal gene transfer has likely played a role in the spreading of aoxB in prokaryotic communities.


BMC Microbiology | 2009

Carbon and arsenic metabolism in Thiomonas strains: differences revealed diverse adaptation processes

Christopher G. Bryan; Marie Marchal; Fabienne Battaglia-Brunet; Valérie Kugler; Christelle Lemaître-Guillier; Didier Lièvremont; Philippe N. Bertin; Florence Arsène-Ploetze

BackgroundThiomonas strains are ubiquitous in arsenic-contaminated environments. Differences between Thiomonas strains in the way they have adapted and respond to arsenic have never been studied in detail. For this purpose, five Thiomonas strains, that are interesting in terms of arsenic metabolism were selected: T. arsenivorans, Thiomonas spp. WJ68 and 3As are able to oxidise As(III), while Thiomonas sp. Ynys1 and T. perometabolis are not. Moreover, T. arsenivorans and 3As present interesting physiological traits, in particular that these strains are able to use As(III) as an electron donor.ResultsThe metabolism of carbon and arsenic was compared in the five Thiomonas strains belonging to two distinct phylogenetic groups. Greater physiological differences were found between these strains than might have been suggested by 16S rRNA/rpoA gene phylogeny, especially regarding arsenic metabolism. Physiologically, T. perometabolis and Ynys1 were unable to oxidise As(III) and were less arsenic-resistant than the other strains. Genetically, they appeared to lack the aox arsenic-oxidising genes and carried only a single ars arsenic resistance operon. Thiomonas arsenivorans belonged to a distinct phylogenetic group and increased its autotrophic metabolism when arsenic concentration increased. Differential proteomic analysis revealed that in T. arsenivorans, the rbc/cbb genes involved in the assimilation of inorganic carbon were induced in the presence of arsenic, whereas these genes were repressed in Thiomonas sp. 3As.ConclusionTaken together, these results show that these closely related bacteria differ substantially in their response to arsenic, amongst other factors, and suggest different relationships between carbon assimilation and arsenic metabolism.


Biochimie | 2009

Enhanced structural and functional genome elucidation of the arsenite-oxidizing strain Herminiimonas arsenicoxydans by proteomics data

Stéphanie Weiss; Christine Carapito; Jessica Cleiss; Sandrine Koechler; Evelyne Turlin; Jean-Yves Coppée; Michaël Heymann; Valérie Kugler; Magalie Stauffert; Stéphane Cruveiller; Claudine Médigue; Alain Van Dorsselaer; Philippe N. Bertin; Florence Arsène-Ploetze

The arsenite-oxidizing strain Herminiimonas arsenicoxydans proteome was investigated with gel electrophoresis and tandem mass spectrometry analyses. The comparison of experimental and theoretical M(r) and pI, as well as that of peptide sequences identified by MS and predicted protein sequences, allowed the correction of five protein annotations. More importantly, the functional analysis of SDS- and 2D-PAGE proteome maps obtained in the presence of arsenic, combined with partial transcriptomic results indicate that H. arsenicoxydans expressed genes and proteins required not only for arsenic detoxification or stress response but also involved in motility, exopolysaccharide synthesis, phosphate import or energetic metabolism. This study provides therefore new insights into the adaptation processes of H. arsenicoxydans in response to arsenic.


BMC Genomics | 2010

Temporal transcriptomic response during arsenic stress in Herminiimonas arsenicoxydans.

Jessica Cleiss-Arnold; Sandrine Koechler; Caroline Proux; Marie-Laure Fardeau; Marie-Agnès Dillies; Jean-Yves Coppée; Florence Arsène-Ploetze; Philippe N. Bertin

BackgroundArsenic is present in numerous ecosystems and microorganisms have developed various mechanisms to live in such hostile environments. Herminiimonas arsenicoxydans, a bacterium isolated from arsenic contaminated sludge, has acquired remarkable capabilities to cope with arsenic. In particular our previous studies have suggested the existence of a temporal induction of arsenite oxidase, a key enzyme in arsenic metabolism, in the presence of As(III).ResultsMicroarrays were designed to compare gene transcription profiles under a temporal As(III) exposure. Transcriptome kinetic analysis demonstrated the existence of two phases in arsenic response. The expression of approximatively 14% of the whole genome was significantly affected by an As(III) early stress and 4% by an As(III) late exposure. The early response was characterized by arsenic resistance, oxidative stress, chaperone synthesis and sulfur metabolism. The late response was characterized by arsenic metabolism and associated mechanisms such as phosphate transport and motility. The major metabolic changes were confirmed by chemical, transcriptional, physiological and biochemical experiments. These early and late responses were defined as general stress response and specific response to As(III), respectively.ConclusionGene expression patterns suggest that the exposure to As(III) induces an acute response to rapidly minimize the immediate effects of As(III). Upon a longer arsenic exposure, a broad metabolic response was induced. These data allowed to propose for the first time a kinetic model of the As(III) response in bacteria.


Genome Biology and Evolution | 2013

Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium Rhizobium sp. NT-26

Jérémy Andres; Florence Arsène-Ploetze; Valérie Barbe; Céline Brochier-Armanet; Jessica Cleiss-Arnold; Jean-Yves Coppée; Marie-Agnès Dillies; Lucie Geist; Aurélie Joublin; Sandrine Koechler; Florent Lassalle; Marie Marchal; Claudine Médigue; Daniel Muller; Xavier Nesme; Frédéric Plewniak; Caroline Proux; Martha Helena Ramírez-Bahena; Chantal Schenowitz; Odile Sismeiro; David Vallenet; Joanne M. Santini; Philippe N. Bertin

Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed different mechanisms to deal with toxic compounds such as arsenic and this is to resist or metabolize the compound. Here, we present the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively, a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel functions.


Research in Microbiology | 2011

Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments

David Halter; Audrey Cordi; Simonetta Gribaldo; Sebastien Gallien; Florence Goulhen-Chollet; Audrey Heinrich-Salmeron; Christine Carapito; Christophe Pagnout; Didier Montaut; Fabienne Séby; Alain Van Dorsselaer; Christine Schaeffer; Philippe N. Bertin; Pascale Bauda; Florence Arsène-Ploetze

Arsenic-resistant prokaryote diversity is far from being exhaustively explored. In this study, the arsenic-adapted prokaryotic community present in a moderately arsenic-contaminated site near Sainte-Marie-aux-Mines (France) was characterized, using metaproteomic and 16S rRNA-encoding gene amplification. High prokaryotic diversity was observed, with a majority of Proteobacteria, Acidobacteria and Bacteroidetes, and a large archaeal community comprising Euryarchaeaota and Thaumarchaeota. Metaproteomic analysis revealed that Proteobacteria, Planctomycetes and Cyanobacteria are among the active bacteria in this ecosystem. Taken together, these results highlight the unsuspected high diversity of the arsenic-adapted prokaryotic community, with some phyla never having been described in highly arsenic-exposed sites.

Collaboration


Dive into the Florence Arsène-Ploetze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Halter

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corinne Casiot

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge