Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David I. Cook is active.

Publication


Featured researches published by David I. Cook.


The EMBO Journal | 1996

Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C.

David I. Cook; Michael J. Fry; K Hughes; R Sumathipala; J R Woodgett; Trevor Clive Dale

The Drosophila gene product Wingless (Wg) is a secreted glycoprotein and a member of the Wnt gene family. Genetic analysis of Drosophila epidermal development has defined a putative paracrine Wg signalling pathway involving the zeste‐white 3/shaggy (zw3/sgg) gene product. Although putative components of Wg‐ (and by inference Wnt‐) mediated signalling pathways have been identified by genetic analysis, the biochemical significance of most factors remains unproven. Here we show that in mouse 10T1/2 fibroblasts the activity of glycogen synthase kinase‐3 (GSK‐3), the murine homologue of Zw3/Sgg, is inactivated by Wg. This occurs through a signalling pathway that is distinct from insulin‐mediated regulation of GSK‐3 in that Wg signalling to GSK‐3 is insensitive to wortmannin. Additionally, Wg‐induced inactivation of GSK‐3 is sensitive to both the protein kinase C (PKC) inhibitor Ro31–8220 and prolonged pre‐treatment of 10T1/2 fibroblasts with phorbol ester. These findings provide the first biochemical evidence in support of the genetically defined pathway from Wg to Zw3/Sgg, and suggest a previously uncharacterized role for a PKC upstream of GSK‐3/Zw3 during Wnt/Wg signal transduction.


The EMBO Journal | 1999

Interaction of Axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription

Matthew John Smalley; Elizabeth Sara; Hugh Paterson; Stuart Naylor; David I. Cook; Hiran Jayatilake; Lee G. Fryer; Lisa Hutchinson; Michael J. Fry; Trevor Clive Dale

Axin promotes the phosphorylation of β‐catenin by GSK‐3β, leading to β‐catenin degradation. Wnt signals interfere with β‐catenin turnover, resulting in enhanced transcription of target genes through the increased formation of β‐catenin complexes containing TCF transcription factors. Little is known about how GSK‐3β‐mediated β‐catenin turnover is regulated in response to Wnt signals. We have explored the relationship between Axin and Dvl‐2, a member of the Dishevelled family of proteins that function upstream of GSK‐3β. Expression of Dvl‐2 activated TCF‐dependent transcription. This was blocked by co‐expression of GSK‐3β or Axin. Expression of a 59 amino acid GSK‐3β‐binding region from Axin strongly activated transcription in the absence of an upstream signal. Introduction of a point mutation into full‐length Axin that prevented GSK‐3β binding also generated a transcriptional activator. When co‐expressed, Axin and Dvl‐2 co‐localized within expressing cells. When Dvl‐2 localization was altered using a C‐terminal CAAX motif, Axin was also redistributed, suggesting a close association between the two proteins, a conclusion supported by co‐immunoprecipitation data. Deletion analysis suggested that Dvl‐association determinants within Axin were contained between residues 603 and 810. The association of Axin with Dvl‐2 may be important in the transmission of Wnt signals from Dvl‐2 to GSK‐3β.


PLOS ONE | 2012

Increased Gut Permeability and Microbiota Change Associate with Mesenteric Fat Inflammation and Metabolic Dysfunction in Diet-Induced Obese Mice

Yan Y. Lam; Connie Wy Ha; Craig R. Campbell; Andrew J. Mitchell; Anuwat Dinudom; Jan Oscarsson; David I. Cook; Nicholas H. Hunt; Ian D. Caterson; Andrew J. Holmes; Len H. Storlien

We investigated the relationship between gut health, visceral fat dysfunction and metabolic disorders in diet-induced obesity. C57BL/6J mice were fed control or high saturated fat diet (HFD). Circulating glucose, insulin and inflammatory markers were measured. Proximal colon barrier function was assessed by measuring transepithelial resistance and mRNA expression of tight-junction proteins. Gut microbiota profile was determined by 16S rDNA pyrosequencing. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 mRNA levels were measured in proximal colon, adipose tissue and liver using RT-qPCR. Adipose macrophage infiltration (F4/80+) was assessed using immunohistochemical staining. HFD mice had a higher insulin/glucose ratio (P = 0.020) and serum levels of serum amyloid A3 (131%; P = 0.008) but reduced circulating adiponectin (64%; P = 0.011). In proximal colon of HFD mice compared to mice fed the control diet, transepithelial resistance and mRNA expression of zona occludens 1 were reduced by 38% (P<0.001) and 40% (P = 0.025) respectively and TNF-α mRNA level was 6.6-fold higher (P = 0.037). HFD reduced Lactobacillus (75%; P<0.001) but increased Oscillibacter (279%; P = 0.004) in fecal microbiota. Correlations were found between abundances of Lactobacillus (r = 0.52; P = 0.013) and Oscillibacter (r = −0.55; P = 0.007) with transepithelial resistance of the proximal colon. HFD increased macrophage infiltration (58%; P = 0.020), TNF-α (2.5-fold, P<0.001) and IL-6 mRNA levels (2.5-fold; P = 0.008) in mesenteric fat. Increased macrophage infiltration in epididymal fat was also observed with HFD feeding (71%; P = 0.006) but neither TNF-α nor IL-6 was altered. Perirenal and subcutaneous adipose tissue showed no signs of inflammation in HFD mice. The current results implicate gut dysfunction, and attendant inflammation of contiguous adipose, as salient features of the metabolic dysregulation of diet-induced obesity.


Journal of Biological Chemistry | 2001

The Nedd4-like Protein KIAA0439 Is a Potential Regulator of the Epithelial Sodium Channel

Kieran F. Harvey; Anuwat Dinudom; David I. Cook; Sharad Kumar

The amiloride-sensitive epithelial sodium channel (ENaC) plays a critical role in fluid and electrolyte homeostasis and consists of α, β, and γ subunits. The carboxyl terminus of each ENaC subunit contains a PPxY, motif which is believed to be important for interaction with the WW domains of the ubiquitin-protein ligase, Nedd4. Disruption of this interaction, as in Liddles syndrome, where mutations delete or alter the PPxY motif of either the β or γ subunits, has been proposed to result in increased ENaC activity. Here we present evidence that KIAA0439 protein, a close relative of Nedd4, is also a potential regulator of ENaC. We demonstrate that KIAA0439 WW domains bind all three ENaC subunits. We show that a recombinant KIAA0439 WW domain protein acts as a dominant negative mutant that can interfere with the Na+-dependent feedback inhibition of ENaC in whole-cell patch clamp experiments. We propose that KIAA0439 and Nedd4 proteins either play a redundant role in ENaC regulation or function in a tissue- and/or signal-specific manner to down-regulate ENaC.


Journal of Biological Chemistry | 1999

All Three WW Domains of Murine Nedd4 Are Involved in the Regulation of Epithelial Sodium Channels by Intracellular Na

Kieran F. Harvey; Anuwat Dinudom; Permsak Komwatana; Corina N. Jolliffe; Margot L. Day; Gayathri Parasivam; David I. Cook; Sharad Kumar

The amiloride-sensitive epithelial sodium channel (ENaC) plays a critical role in fluid and electrolyte homeostasis and consists of α, β, and γ subunits. The carboxyl terminus of each ENaC subunit contains a PPxY motif which is necessary for interaction with the WW domains of the ubiquitin-protein ligase, Nedd4. Disruption of this interaction, as in Liddle’s syndrome where mutations delete or alter the PY motif of either the β or γ subunits, results in increased ENaC activity. We have recently shown using the whole-cell patch clamp technique that Nedd4 mediates the ubiquitin-dependent down-regulation of Na+ channel activity in response to increased intracellular Na+. In this paper, we demonstrate that WW domains 2 and 3 bind α-, β-, and γ-ENaC with varying degrees of affinity, whereas WW domain 1 does not bind to any of the subunits. We further show using whole-cell patch clamp techniques that Nedd4-mediated down-regulation of ENaC in mouse mandibular duct cells involves binding of the WW domains of Nedd4 to three distinct sites. We propose that Nedd4-mediated down-regulation of Na+ channels involves the binding of WW domains 2 and 3 to the Na+channel and of WW domain 1 to an unknown associated protein.


Journal of Biological Chemistry | 2007

Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4-2

Il-Ha Lee; Anuwat Dinudom; Angeles Sánchez-Pérez; Sharad Kumar; David I. Cook

The epithelial sodium channel (ENaC) plays an important role in transepithelial Na+ absorption; hence its function is essential for maintaining Na+ and fluid homeostasis and regulating blood pressure. Insulin is one of the hormones that regulates activity of ENaC. In this study, we investigated the contribution of two related protein kinases, Akt (also known as protein kinase B) and the serum- and glucocorticoid-dependent kinase (Sgk), on insulin-induced ENaC activity in Fisher rat thyroid cells expressing ENaC. Overexpression of Akt1 or Sgk1 significantly increased ENaC activity, whereas expression of a dominant-negative construct of Akt1, Akt1K179M, decreased basal activity of ENaC. Inhibition of the endogenous expression of Akt1 and Sgk1 by short interfering RNA not only inhibited ENaC but also disrupted the stimulatory effect on ENaC of insulin and of the downstream effectors of insulin, phosphatidylinositol 3-kinase and PDK1. Conversely, overexpression of Akt1 or Sgk1 increased expression of ENaC at the cell membrane and overcame the inhibitory effect of Nedd4-2 on ENaC. Furthermore, mutation of consensus phosphorylation sites on Nedd4-2 for Akt1 and Sgk1, Ser342 and Ser428, completely abolished the inhibitory effect of Sgk1 and Akt1 on Nedd4-2 action. Together these data suggest that both Akt and Sgk are components of an insulin signaling pathway that increases Na+ absorption by up-regulating membrane expression of ENaC via a regulatory system that involves inhibition of Nedd4-2.


The Journal of Membrane Biology | 1993

Na+ and Cl− conductances are controlled by cytosolic Cl− concentration in the intralobular duct cells of mouse mandibular glands

Anuwat Dinudom; J. A. Young; David I. Cook

Our previously published whole-cell patch-clamp studies on the cells of the intralobular (granular) ducts of the mandibular glands of male mice revealed the presence of an amiloride-sensitive Na+ conductance in the plasma membrane. In this study we demonstrate the presence also of a Cl− conductance and we show that the sizes of both conductances vary with the Cl− concentration of the fluid bathing the cytosolic surface of the plasma membrane. As the cytosolic Cl− concentration rises from 5 to 150 mmol/liter, the size of the inward Na+ current declines, the decline being half-maximal when the Cl− concentration is approximately 50 mmol/liter. In contrast, as cytosolic Cl− concentration increases, the inward Cl− current remains at a constant low level until the Cl− concentration exceeds 80 mmol/liter, when it begins to increase. Studies in which Cl− in the pipette solution was replaced by other anions indicate that the Na+ current is suppressed by intracellular Br-, Cl− and NO3-but not by intracellular I-, glutamate or gluconate. Our studies also show that the Cl− conductance allows passage of Cl− and Br- equally well, I-less well, and NO3-, glutamate and gluconate poorly, if at all. The findings with NO3-are of particular interest because they show that suppression of the Na+ current by a high intracellular concentration of a particular anion does not depend on actual passage of that anion through the Cl− conductance. In mouse granular duct cells there is, thus, a reciprocal regulation of Na+ and Cl− conductances by the cytosolic Cl− concentration. Since the cytosolic Cl− concentration is closely correlated with cell volume in many epithelia, this reciprocal regulation of Na+ and Cl− conductances may provide a mechanism by which ductal Na+ and Cl transport rates are adjusted so as to maintain a stable cell volume.


Journal of Biological Chemistry | 2004

Nedd4-2 Functionally Interacts with ClC-5 INVOLVEMENT IN CONSTITUTIVE ALBUMIN ENDOCYTOSIS IN PROXIMAL TUBULE CELLS

Deanne H. Hryciw; Jenny Ekberg; Aven Lee; Ingrid L. Lensink; Sharad Kumar; William B. Guggino; David I. Cook; Carol A. Pollock; Philip Poronnik

Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl– channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2. Nedd4-2 alone was able to alter ClC-5 currents in Xenopus oocytes by decreasing cell surface expression of ClC-5. In OK cells, a physiological concentration of albumin (10 μg/ml) rapidly increased cell surface expression of ClC-5, which was also accompanied by the ubiquitination of ClC-5. Albumin uptake was reduced by inhibiting either the lysosome or proteasome. Total levels of Nedd4-2 and proteasome activity also increased rapidly in response to albumin. Overexpression of ligase defective Nedd4-2 or knockdown of endogenous Nedd4-2 with small interfering RNA resulted in significant decreases in albumin uptake. In contrast, pathophysiological concentrations of albumin (100 and 1000 μg/ml) reduced the levels of ClC-5 and Nedd4-2 and the activity of the proteasome to the levels seen in the absence of albumin. These data demonstrate that normal constitutive uptake of albumin by the proximal tubule requires Nedd4-2, which may act via ubiquitination to shunt ClC-5 into the endocytic pathway.


The FASEB Journal | 2002

The role of individual Nedd4–2 (KIAA0439) WW domains in binding and regulating epithelial sodium channels

Andrew B. Fotia; Anuwat Dinudom; Keith E. Shearwin; Jan-Peter Koch; Christoph Korbmacher; David I. Cook; Sharad Kumar

The amiloride‐sensitive epithelial sodium channel (ENaC) is essential for fluid and electrolyte homeostasis. ENaC consists of α, β, and γ subunits, each of which contains a PPxY motif that interacts with the WW domains of the ubiquitin‐protein ligases Nedd4 and Nedd4–2. Disruption of this interaction, as in Liddles syndrome in which mutations delete or alter the PPxY motif of either the β or the γ subunits, results in increased ENaC activity. We report here that Nedd4–2 has two major isoforms that show tissue‐specific expression; however, both isoforms can inhibit ENaC in Xenopus oocytes. Because there are four WW domains in Nedd4–2, we analyzed binding kinetics and affinity between individual WW domains and ENaC subunits. Using whole cell patch‐clamp techniques, we studied the role of individual WW domains in the regulation of ENaC in mammalian cells. We report here that unlike Nedd4, only two of the Nedd4–2 WW domains, WW3 and WW4, are required for both the binding to ENaC subunits and the regulation of Na+ feedback control of ENaC. Although both WW3 and WW4 individually can interact with all three ENaC subunits in vitro, both domains together are essential for in vivo function of Nedd4–2 in ENaC regulation. These data suggest that Nedd4–2 WW3 and WW4 interact with distinct, noninterchangeable sites in ENaC and that to prevent Na+ feedback control of ENaC it is necessary to occlude both sites.


Neuropharmacology | 2000

P2X1 receptor membrane redistribution and down-regulation visualized by using receptor-coupled green fluorescent protein chimeras

J.L. Dutton; P. Poronnik; G.H. Li; Christopher Holding; R.A. Worthington; R.J. Vandenberg; David I. Cook; Julian A. Barden; Max R. Bennett

The P2X(1) purinergic receptor subtype occurs on smooth muscle cells of the vas deferens and urinary bladder where it is localized in two different size receptor clusters, with the larger beneath autonomic nerve terminal varicosities. We have sought to determine whether these synaptic-size clusters only form in the presence of varicosities and whether they are labile when exposed to agonists. P2X(1) and a chimera of P2X(1) and green fluorescent protein (GFP) were delivered into cells using microinjection, transient transfection or infection with a replication-deficient adenovirus. The P2X(1)-GFP chimera was used to study the time course of P2X(1) receptor clustering in plasma membranes and the internalization of the receptor following prolonged exposure to ATP. Both P2X(1) and P2X(1)-GFP clustered in the plasma membranes of Xenopus oocytes, forming patches 4-6 microm in diameter. Human embryonic kidney 293 (HEK293) cells, infected with the adenovirus, possessed P2X(1) antibody-labeled regions in the membrane colocalized with GFP fluorescence. The ED(50) for the binding of alpha,beta-methylene adenosine triphosphate (alpha,beta-meATP) to the P2X(1)-GFP chimera was similar to native P2X(1) receptors. ATP-generated whole-cell currents in oocytes or HEK293 cells expressing either P2X(1) or P2X(1)-GFP were similar. Exposure of HEK293 cells to alpha, beta-meATP for 10-20 min in the presence of 5 microM monensin led to the disappearance of P2X(1)-GFP fluorescence from the surface of the cells. These observations using the P2X(1)-GFP chimera demonstrate that P2X(1) receptors spontaneously form synaptic-size clusters in the plasma membrane that are internalized on exposure to agonists.

Collaboration


Dive into the David I. Cook's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharad Kumar

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol A. Pollock

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kieran F. Harvey

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge