Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Poronnik is active.

Publication


Featured researches published by Philip Poronnik.


Journal of Biological Chemistry | 2007

Cytoskeletal Anchoring of GLAST Determines Susceptibility to Brain Damage AN IDENTIFIED ROLE FOR GFAP

S. M. Sullivan; Aven Lee; S. Tracey Bjorkman; S. M. Miller; R. K. P. Sullivan; Philip Poronnik; Paul B. Colditz; David V. Pow

Glial fibrillary acidic protein (GFAP) is an enigmatic protein; it currently has no unambiguously defined role. It is expressed in the cytoskeleton of astrocytes in the mammalian brain. We have used co-immunoprecipitation to identify in vivo binding partners for GFAP in the rat and pig brain. We demonstrate interactions between GFAP, the glutamate transporter GLAST, the PDZ-binding protein NHERF1, and ezrin. These interactions are physiologically relevant; we demonstrate in vitro that transport of d-aspartate (a glutamate analogue) is significantly increased in the presence of GFAP and NHERF1. Moreover, we demonstrate in vivo that expression of GFAP is essential in retaining GLAST in the plasma membranes of astrocytes after an hypoxic insult. These data indicate that the cytoskeleton of the astrocyte plays an important role in protecting the brain against glutamate-mediated excitotoxicity.


Journal of Biological Chemistry | 2004

Nedd4-2 Functionally Interacts with ClC-5 INVOLVEMENT IN CONSTITUTIVE ALBUMIN ENDOCYTOSIS IN PROXIMAL TUBULE CELLS

Deanne H. Hryciw; Jenny Ekberg; Aven Lee; Ingrid L. Lensink; Sharad Kumar; William B. Guggino; David I. Cook; Carol A. Pollock; Philip Poronnik

Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl– channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2. Nedd4-2 alone was able to alter ClC-5 currents in Xenopus oocytes by decreasing cell surface expression of ClC-5. In OK cells, a physiological concentration of albumin (10 μg/ml) rapidly increased cell surface expression of ClC-5, which was also accompanied by the ubiquitination of ClC-5. Albumin uptake was reduced by inhibiting either the lysosome or proteasome. Total levels of Nedd4-2 and proteasome activity also increased rapidly in response to albumin. Overexpression of ligase defective Nedd4-2 or knockdown of endogenous Nedd4-2 with small interfering RNA resulted in significant decreases in albumin uptake. In contrast, pathophysiological concentrations of albumin (100 and 1000 μg/ml) reduced the levels of ClC-5 and Nedd4-2 and the activity of the proteasome to the levels seen in the absence of albumin. These data demonstrate that normal constitutive uptake of albumin by the proximal tubule requires Nedd4-2, which may act via ubiquitination to shunt ClC-5 into the endocytic pathway.


Journal of Biological Chemistry | 2003

Cofilin Interacts with ClC-5 and Regulates Albumin Uptake in Proximal Tubule Cell Lines

Deanne H. Hryciw; Yinghong Wang; Olivier Devuyst; Carol A. Pollock; Philip Poronnik; William B. Guggino

Receptor-mediated endocytosis is a constitutive high capacity pathway for the reabsorption of proteins from the glomerular filtrate by the renal proximal tubule. ClC-5 is a voltage-gated chloride channel found in the proximal tubule where it has been shown to be essential for protein uptake, based on evidence from patients with Dents disease and studies in ClC-5 knockout mice. To further delineate the role of ClC-5 in albumin uptake, we performed a yeast two-hybrid screen with the C-terminal tail of ClC-5 to identify any interactions of the channel with proteins involved in endocytosis. We found that the C-terminal tail of ClC-5 bound the actin depolymerizing protein, cofilin, a result that was confirmed by GST-fusion pulldown assays. In cultured proximal tubule cells, cofilin was distributed in nuclear, cytoplasmic, and microsomal fractions and co-localized with ClC-5. Phosphorylation of cofilin by overexpressing LIM kinase 1 resulted in a stabilization of the actin cytoskeleton. Phosphorylation of cofilin in two proximal tubule cell models (porcine renal proximal tubule and opossum kidney) was also accompanied by a pronounced inhibition of albumin uptake. This study identifies a novel interaction between the C-terminal tail of ClC-5 and cofilin, an actin-associated protein that is crucial in the regulation of albumin uptake by the proximal tubule.


Journal of Biological Chemistry | 2007

Regulation of the Voltage-gated K+ Channels KCNQ2/3 and KCNQ3/5 by Ubiquitination NOVEL ROLE FOR Nedd4-2

Jenny Ekberg; Friderike Schuetz; Natasha A. Boase; Sarah-Jane Conroy; Jantina Manning; Sharad Kumar; Philip Poronnik; David J. Adams

The muscarine-sensitive K+ current (M-current) stabilizes the resting membrane potential in neurons, thus limiting neuronal excitability. The M-current is mediated by heteromeric channels consisting of KCNQ3 subunits in association with either KCNQ2 or KCNQ5 subunits. The role of KCNQ2/3/5 in the regulation of neuronal excitability is well established; however, little is known about the mechanisms that regulate the cell surface expression of these channels. Ubiquitination by the Nedd4/Nedd4-2 ubiquitin ligases is known to regulate a number of membrane ion channels and transporters. In this study, we investigated whether Nedd4/Nedd4-2 could regulate KCNQ2/3/5 channels. We found that the amplitude of the K+ currents mediated by KCNQ2/3 and KCNQ3/5 were reduced by Nedd4-2 (but not Nedd4) in a Xenopus oocyte expression system. Deletion experiments showed that the C-terminal region of the KCNQ3 subunit is required for the Nedd4-2-mediated regulation of the heteromeric channels. Glutathione S-transferase fusion pulldowns and co-immunoprecipitations demonstrated a direct interaction between KCNQ2/3 and Nedd4-2. Furthermore, Nedd4-2 could ubiquitinate KCNQ2/3 in transfected cells. Taken together, these data suggest that Nedd4-2 is potentially an important regulator of M-current activity in the nervous system.


The Journal of Membrane Biology | 1990

Characterization of a 25-pS nonselective cation channel in a cultured secretory epithelial cell line

David I. Cook; Philip Poronnik; J. A. Young

SummaryWe have studied a 25-pS nonselective cation channel from the apical membranes of cell line ST885, derived from neonatal mouse mandibular glands. Its Cl− permeability was not significantly different from zero. The permeabilities (relative to Na+) for inorganic cations were NH4+(1.87)>K+(1.12)>Li+ (1.02)>Na+(1)>Rb+(0.81)>Mg2+(0.07)>Ca2+(0.002), and for organic cations, guanidinium (1.61)4-aminopyridine (0.66)>diethylamine (0.54)>piperazine (0.25)>Tris (0.18)>N-methylglucamine (0.12). The Tris and N-methylglucamine permeabilities differed significantly from zero. Fitting the Renkin equation indicated that the channel had an equivalent pore radius of 0.49 nm. The channel was activated by Ca2+ on the cytosolic surface (>0.1 mmol/liter) with a Hill coefficient of 1.2; it was also activated by depolarization. Open- and closed-time histograms indicated that it had at least two open and two closed states. The channel was blocked by cytosolic AMP or ATP (0.1 mmol/liter). It was also blocked by the Cl− channel blocker, diphenylamine-2-carboxylate (DPC; 0.1 mmol/liter), applied to the extracellular but not the cytosolic surface. 4-Aminopyridine, which permeated the channel when applied to the extracellular surface, blocked it when applied in low concentrations (5 mmol/liter) to the cytosolic surface. Quinine (0.1 mmol/liter) blocked from both the extracellular and cytosolic surfaces, blockade from either side being enhanced by depolarization. The channel was held open by application of SITS (0.1 mmol/liter) to the cytosolic surface. The channel shows striking similarities to the nicotinic acetylcholine receptor channel,viz., both channel types are abnormally permeable to 4-aminopyridine applied externally, and their selectivity sequences for inorganic ions are similar and for organic cations are identical.


Current Opinion in Nephrology and Hypertension | 2007

Albumin transport and processing by the proximal tubule: physiology and pathophysiology

Carol A. Pollock; Philip Poronnik

Purpose of reviewSignificant epidemiological and clinical trial evidence supports the association between increased urinary albumin excretion, cardiovascular events and renal failure. An increase in albumin excretion has traditionally been considered to reflect a ‘glomerular’ leak of protein; however, it is now recognized that significant tubular reabsorption of albumin occurs under physiological conditions that may be modified by genetic determinants, systemic disease and drug therapies. Recent findingsThe endocytosis of albumin by the proximal tubule is a highly regulated process depending on protein–protein interactions between several membrane proteins and scaffolding and regulatory molecules. The elucidation of these interactions is an ongoing research focus. There is also mounting evidence for a transcytotic pathway for retrieval of albumin from the tubular filtrate. The molecular basis for the role of albuminuria in both interstitial renal disease and cardiovascular pathology continues to be defined. The clinical implications of albuminuria due to a glomerular leak vs. reduced tubular reabsorption of albumin are, however, now under consideration. In particular, the prognostic implication of microalbuminuria induced by the more potent 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors is under study. SummaryThe currently defined mechanisms underpinning the tubular reabsorption of albumin, how these are modified by pathology and pharmacology, and the clinical implications are the subject of this review.


American Journal of Physiology-renal Physiology | 2013

Adipokines as a link between obesity and chronic kidney disease

Jessica F. Briffa; Andrew J. McAinch; Philip Poronnik; Deanne H. Hryciw

Adipocytes secrete a number of bioactive adipokines that activate a variety of cell signaling pathways in central and peripheral tissues. Obesity is associated with the altered production of many adipokines and is linked to a number of pathologies. As an increase in body weight is directly associated with an increased risk for developing chronic kidney disease (CKD), there is significant interest in the link between obesity and renal dysfunction. Altered levels of the adipokines leptin, adiponectin, resistin, and visfatin can decrease the glomerular filtration rate and increase albuminuria, which are pathophysiological changes typical of CKD. Specifically, exposure of the glomerulus to altered adipokine levels can increase its permeability, fuse the podocytes, and cause mesangial cell hypertrophy, all of which alter the glomerular filtration rate. In addition, the adipokines leptin and adiponectin can act on tubular networks. Thus, adipokines can act on multiple cell types in the development of renal pathophysiology. Importantly, most studies have been performed using in vitro models, with future studies in vivo required to further elucidate the specific roles that adipokines play in the development and progression of CKD.


Diabetologia | 1997

Mechanisms of arginine-induced increase in cytosolic calcium concentration in the beta-cell line NIT-1

Anthony J. Weinhaus; Philip Poronnik; Bernard E. Tuch; David I. Cook

Summary The effects of l-arginine and its analogues NG-nitro-l-arginine, NG-methyl-l-arginine, l-homoarginine and d-arginine on cytosolic calcium concentration were investigated to characterise the mechanisms of arginine-induced stimulation and to determine if nitric oxide production played a role in this stimulation. NIT-1 cells, a transgenic beta-cell line, were used for this purpose since they release insulin in response to typical beta-cell stimuli. Our data demonstrate that the arginine-induced increase in cytosolic calcium concentration was completely dependent on the influx of extracellular Ca2 + via verapamil-sensitive voltage-activated Ca2 + channels and that arginine stimulation requires the presence of a nutrient in order to cause an increase in cytosolic calcium concentration. The nutrient likely acted by closing the K +ATP channels, since its effect could be inhibited by activation of these channels with diazoxide. l-arginine, as well as nitro-arginine and methyl-arginine which are not substrates for the production of nitric oxide, caused similar increases in cytosolic calcium concentration. Non-metabolisable arginine analogues homoarginine and d-arginine also caused increases in the cytosolic calcium concentration although not to the same extent. Insulin secretion was enhanced to the same extent by all analogues of arginine. It can be concluded that the arginine-induced increase in cytosolic calcium concentration in NIT-1 cells is attributable to an electrogenic effect following the transport of arginine leading to depolarisation of the plasma membrane potential, although metabolism of the amino acid itself may also partially contribute to the response. [Diabetologia (1997) 40: 374–382]


Journal of Biological Chemistry | 2006

Regulation of Albumin Endocytosis by PSD95/Dlg/ZO-1 (PDZ) Scaffolds INTERACTION OF Na+-H+ EXCHANGE REGULATORY FACTOR-2 WITH ClC-5

Deanne H. Hryciw; Jenny Ekberg; Charles Ferguson; Aven Lee; Dongsheng Wang; Robert G. Parton; Carol A. Pollock; C. Chris Yun; Philip Poronnik

The constitutive reuptake of albumin from the glomerular filtrate by receptor-mediated endocytosis is a key function of the renal proximal tubules. Both the Cl– channel ClC-5 and the Na+-H+ exchanger isoform 3 are critical components of the macromolecular endocytic complex that is required for albumin uptake, and therefore the cell-surface levels of these proteins may limit albumin endocytosis. This study was undertaken to investigate the potential roles of the epithelial PDZ scaffolds, Na+-H+ exchange regulatory factors, NHERF1 and NHERF2, in albumin uptake by opossum kidney (OK) cells. We found that ClC-5 co-immunoprecipitates with NHERF2 but not NHERF1 from OK cell lysate. Experiments using fusion proteins demonstrated that this was a direct interaction between an internal binding site in the C terminus of ClC-5 and the PDZ2 module of NHERF2. In OK cells, NHERF2 is restricted to the intravillar region while NHERF1 is located in the microvilli. Silencing NHERF2 reduced both cell-surface levels of ClC-5 and albumin uptake. Conversely, silencing NHERF1 increased cell-surface levels of ClC-5 and albumin uptake, presumably by increasing the mobility of NHE3 in the membrane and its availability to the albumin uptake complex. Surface biotinylation experiments revealed that both NHERF1 and NHERF2 were associated with the plasma membrane and that NHERF2 was recruited to the membrane in the presence of albumin. The importance of the interaction between NHERF2 and the cytoskeleton was demonstrated by a significant reduction in albumin uptake in cells overexpressing an ezrin binding-deficient mutant of NHERF2. Thus NHERF1 and NHERF2 differentially regulate albumin uptake by mechanisms that ultimately alter the cell-surface levels of ClC-5.


Neuroscience Letters | 2005

A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels.

Wade A. Kruger; Daniel Gilbert; Rebecca L. Hawthorne; Deanne H. Hryciw; Stephan Frings; Philip Poronnik; Joseph W. Lynch

There is a significant clinical need to identify novel ligands with high selectivity and potency for GABA(A), GABA(C) and glycine receptor Cl- channels. Two recently developed, yellow fluorescent protein variants (YFP-I152L and YFP-V163S) are highly sensitive to quench by small anions and are thus suited to reporting anionic influx into cells. The aim of this study was to establish the optimal conditions for using these constructs for high-throughput screening of GABA(A), GABA(C) and glycine receptors transiently expressed in HEK293 cells. We found that a 70% fluorescence reduction was achieved by quenching YFP-I152L with a 10 s influx of I- ions, driven by an external I- concentration of at least 50 mM. The fluorescence quench was rapid, with a mean time constant of 3 s. These responses were similar for all anion receptor types studied. We also show the assay is sufficiently sensitive to measure agonist and antagonist concentration-responses using either imaging- or photomultiplier-based detection systems. The robustness, sensitivity and low cost of this assay render it suited for high-throughput screening of transiently expressed anionic ligand-gated channels.

Collaboration


Dive into the Philip Poronnik's collaboration.

Top Co-Authors

Avatar

Carol A. Pollock

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aven Lee

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

David V. Pow

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Sharad Kumar

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

David W. Johnson

Princess Alexandra Hospital

View shared research outputs
Top Co-Authors

Avatar

Wade A. Kruger

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge