Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Erickson is active.

Publication


Featured researches published by David J. Erickson.


Journal of Geophysical Research | 1995

A global model of natural volatile organic compound emissions

Alex Guenther; C. Nicholas Hewitt; David J. Erickson; Ray Fall; Chris Geron; T. E. Graedel; Peter Harley; L. Klinger; Manuel T. Lerdau; W. A. Mckay; Tom Pierce; Bob Scholes; Rainer Steinbrecher; Raja Tallamraju; John Taylor; P. R. Zimmerman

Numerical assessments of global air quality and potential changes in atmospheric chemical constituents require estimates of the surface fluxes of a variety of trace gas species. We have developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC). Methane is not considered here and has been reviewed in detail elsewhere. The model has a highly resolved spatial grid (0.5° × 0.5° latitude/longitude) and generates hourly average emission estimates. Chemical species are grouped into four categories: isoprene, monoterpenes, other reactive VOC (ORVOC), and other VOC (OVOC). NVOC emissions from oceans are estimated as a function of geophysical variables from a general circulation model and ocean color satellite data. Emissions from plant foliage are estimated from ecosystem specific biomass and emission factors and algorithms describing light and temperature dependence of NVOC emissions. Foliar density estimates are based on climatic variables and satellite data. Temporal variations in the model are driven by monthly estimates of biomass and temperature and hourly light estimates. The annual global VOC flux is estimated to be 1150 Tg C, composed of 44% isoprene, 11% monoterpenes, 22.5% other reactive VOC, and 22.5% other VOC. Large uncertainties exist for each of these estimates and particularly for compounds other than isoprene and monoterpenes. Tropical woodlands (rain forest, seasonal, drought-deciduous, and savanna) contribute about half of all global natural VOC emissions. Croplands, shrublands and other woodlands contribute 10–20% apiece. Isoprene emissions calculated for temperate regions are as much as a factor of 5 higher than previous estimates.


Journal of Geophysical Research | 1999

Composite global emissions of reactive chlorine from anthropogenic and natural sources: Reactive Chlorine Emissions Inventory

William C. Keene; M. Aslam K. Khalil; David J. Erickson; A. McCulloch; T. E. Graedel; Jürgen M. Lobert; Michael L. Aucott; S. L. Gong; David B. Harper; Gary Kleiman; Pauline M. Midgley; Robert M. Moore; Christophe Seuzaret; W. T. Sturges; Carmen M. Benkovitz; Valentin Koropalov; L. A. Barrie; Yi-Fan Li

Emission inventories for major reactive tropospheric CI species (particulate CI, HC1, C1NO2, CH3CI, CHCI3, CH3CCI3, C2C14, C2HC13, CH2C12, and CHCIF2) were integrated across source types (terrestrial biogenic and oceanic emissions, sea-salt production and dechlorination, biomass burning, industrial emissions, fossil-fuel combustion, and incinera- tion). Composite emissions were compared with known sinks to assess budget closure; relative contributions of natural and anthropogenic sources were differentiated. Model cal- culations suggest that conventional acid-displacement reactions involving Sov)+O3, S(Iv)+ H202, and H2SO4 and HNO3 scavenging account for minor fractions of sea-salt dechlorina- tion globally. Other important chemical pathways involving sea-salt aerosol apparently pro- duce most volatile chlorine in the troposphere. The combined emissions of CH3CI from known sources account for about half of the modeled sink, suggesting fluxes from known sources were unde:estimated, the OH sink was overestimated, or significant unidentified sources exist. Anthropogenic activities (primarily biomass burning) contribute about half the net CH3CI emitted from known sources. Anthropogenic emissions account for only about 10% of the modeled CHCl3 sink. Although poorly constrained, significant fractions of tropo- spheric CH2C12 (25%), C2HC13 (10%), and C2C14 (5%) are emitted from the surface ocean; the combined contributions of C2C14 and C2HC13 from all natural sources may be substan- tially higher than the estimated oceanic flux.


Journal of Geophysical Research | 1995

Global oceanic emissions of nitrous oxide

Cynthia D. Nevison; Ray F. Weiss; David J. Erickson

The global N2O flux from the ocean to the atmosphere is calculated based on more than 60,000 expedition measurements of the N2O anomaly in surface water. The expedition data are extrapolated globally and coupled to daily air-sea gas transfer coefficients modeled at 2.8°×2.8° resolution to estimate a global ocean source of about 4 (1.2–6.8) Tg N yr−1. The wide range of uncertainty in the source estimate arises mainly from uncertainties in the air-sea gas transfer coefficients and in the global extrapolation of the summertime-biased surface N2O data set. The strongest source is predicted from the 40–60°S latitude band. Strong emissions also are predicted from the northern Pacific Ocean, the equatorial upwelling zone, and coastal upwelling zones occurring predominantly in the tropical northern hemisphere. High apparent oxygen utilization (AOU) at 100 m below the mixed layer is found to be correlated positively both to N2O production at depth and to the surface N2O anomaly. On the basis of these correlations, the expedition data are partitioned into two subsets associated with high and low AOU at depth. The zonally averaged monthly means in each subset are extrapolated to produce two latitude-by-month matrices in which monthly surface N2O is expressed as the deviation from the annual mean. Both matrices contain large uncertainties. The low-AOU matrix, which mainly includes surface N2O data from the North Atlantic and the subtropical gyres, suggests many regions with positive summer deviations and negative winter deviations, consistent with a seasonal cycle predominantly driven by seasonal heating and cooling of the surface ocean. The high-AOU subset, which includes the regions most important to the global N2O ocean source, suggests some regions with positive winter deviations and negative summer deviations, consistent with a seasonal cycle predominantly driven by wintertime mixing of surface water with N2O-rich deep water. Coupled seasonal changes in gas transfer coefficients and surface N2O in these important source regions could strongly influence the global ocean source.


Journal of Climate | 1989

Soil Moisture and the Persistence of North American Drought

Robert J. Oglesby; David J. Erickson

Abstract We describe numerical sensitivity experiments exploring the effects of soil moisture on North American summertime climate using the NCAR CCMI, a 12-layer global atmospheric general circulation model. In particular. the hypothesis that reduced soil moisture may help induce and amplify warm, dry summers over midlatitude continental interiors is examined. Equilibrium climate statistics are computed for the perpetual July model response to imposed soil moisture anomalies over North America between 36° and 49°N. In addition, the persistence of imposed soil moisture anomalies is examined through use of the seasonal cycle mode of operation with use of various initial atmospheric states both equilibrated and nonequilibrated to the initial soil moisture anomaly. The climate statistics generated by thew model simulations resemble in a general way those of the summer of 1988, when extensive heat and drought occurred over much of North America. A reduction in soil moisture in the model leads to an increase i...


Journal of Geophysical Research | 1999

Natural emissions of chlorine‐containing gases: Reactive Chlorine Emissions Inventory

M. A. K. Khalil; Robert M. Moore; David B. Harper; Jürgen M. Lobert; David J. Erickson; Valentin Koropalov; W. T. Sturges; William C. Keene

Although there are many chlorine-containing trace gases in the atmosphere, only those with atmospheric lifetimes of 2 years or fewer appear to have significant natural sources. The most abundant of these gases are methyl chloride, chloroform, dichloromethane, perchloroethylene, and trichloroethylene. Methyl chloride represents about 540 parts per trillion by volume (pptv) Cl, while the others together amount to about 120 pptv Cl. For methyl chloride and chloroform, both oceanic and land-based natural emissions have been identified. For the other gases, there is evidence of oceanic emissions, but the roles of the soils and land are not known and have not been studied. The global annual emission rates from the oceans are estimated to be 460 Gg Cl/yr for CH3Cl, 320 Gg Cl/yr for CHCl3, 160 Gg Cl/yr for CH2Cl2, and about 20 Gg Cl/yr for each of C2HCl3, and C2Cl4. Land-based emissions are estimated to be 100 Gg Cl/yr for CH3Cl and 200 Gg Cl/yr for CHCl3. These results suggest that the oceans account for about 12% of the global annual emissions of methyl chloride, although until now oceans were thought to be the major source. For chloroform, natural emissions from the oceans and lands appear to be the major sources. For further research, the complete database compiled for this work is available from the archive, which includes a monthly emissions inventory on a 1° × 1° latitude-longitude grid for oceanic emissions of methyl chloride.


Photochemical and Photobiological Sciences | 2008

Environmental effects of ozone depletion and its interactions with climate change: progress report, 2011

Anthony Andrady; Pieter J. Aucamp; A. F. Bais; Carlos L. Ballaré; Lars Olof Björn; Janet F. Bornman; Martyn M. Caldwell; Anthony P. Cullen; David J. Erickson; Frank R. de Gruijl; Donat-P. Häder; Mohammad Ilyas; G. Kulandaivelu; H. D. Kumar; Janice Longstreth; Richard McKenzie; Mary Norval; Nigel D. Paul; Halim Hamid Redhwi; Raymond C. Smith; Keith P. Solomon; Barbara Sulzberger; Yukio Takizawa; Xiaoyan Tang; Alan H. Teramura; Ayaiko Torikai; Jan C. van der Leun; Stephen R. Wilson; Robert C. Worrest; Richard G. Zepp

The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change.


Photochemical and Photobiological Sciences | 2007

Interactive effects of solar UV radiation and climate change on biogeochemical cycling

Richard G. Zepp; David J. Erickson; Nigel D. Paul; Barbara Sulzberger

This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earths surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. These interactions involving UV radiation (the combination of UV-B and UV-A) are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B radiation has significant effects on the terrestrial biosphere with implications for the cycling of carbon, nitrogen and other elements. The cycling of carbon and inorganic nutrients such as nitrogen can be affected by UV-B-mediated changes in communities of soil organisms, probably due to the effects of UV-B radiation on plant root exudation and/or the chemistry of dead plant material falling to the soil. In arid environments direct photodegradation can play a major role in the decay of plant litter, and UV-B radiation is responsible for a significant part of this photodegradation. UV-B radiation strongly influences aquatic carbon, nitrogen, sulfur and metals cycling that affect a wide range of life processes. UV-B radiation changes the biological availability of dissolved organic matter to microorganisms, and accelerates its transformation into dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium. The coloured part of dissolved organic matter (CDOM) controls the penetration of UV radiation into water bodies, but CDOM is also photodegraded by solar UV radiation. Changes in CDOM influence the penetration of UV radiation into water bodies with major consequences for aquatic biogeochemical processes. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply occur concurrently with exposure to increased UV-B radiation, and have synergistic effects on the penetration of light into aquatic ecosystems. Future changes in climate will enhance stratification of lakes and the ocean, which will intensify photodegradation of CDOM by UV radiation. The resultant increase in the transparency of water bodies may increase UV-B effects on aquatic biogeochemistry in the surface layer. Changing solar UV radiation and climate also interact to influence exchanges of trace gases, such as halocarbons (e.g., methyl bromide) which influence ozone depletion, and sulfur gases (e.g., dimethylsulfide) that oxidize to produce sulfate aerosols that cool the marine atmosphere. UV radiation affects the biological availability of iron, copper and other trace metals in aquatic environments thus potentially affecting metal toxicity and the growth of phytoplankton and other microorganisms that are involved in carbon and nitrogen cycling. Future changes in ecosystem distribution due to alterations in the physical and chemical climate interact with ozone-modulated changes in UV-B radiation. These interactions between the effects of climate change and UV-B radiation on biogeochemical cycles in terrestrial and aquatic systems may partially offset the beneficial effects of an ozone recovery.


Journal of Geophysical Research | 1993

A stability dependent theory for air‐sea gas exchange

David J. Erickson

The influence of thermal stability at the air-sea interface on computed values of the transfer velocities of trace gases is examined. The novel “whitecap” model for air-sea gas exchange of Monahan and Spillane (1984), extended here to include thermal stability effects, is linked with an atmospheric general circulation model to compute global transfer velocity patterns of a climate reactive gas, CO2. The important terms in the model equations such as the whitecap coverage, friction velocity, neutral and local drag coefficients and the stability parameter ψm(Z/L) are discussed and analyzed. The atmospheric surface level air temperature, relative humidity, wind speed and sea surface temperature, obtained from the National Center for Atmospheric Research Community Climate Model 1 (CCM1) are used to drive algorithms describing the air-sea transfer velocity of trace gases. The transfer velocity for CO2 (kCO2) is then computed for each 2.8° × 2.8° latitudinal-longitudinal area every 24 hours for 5 years of the seasonal-hydro runs of the CCM1. The new model results are compared to previously proposed formulations using the identical CCM1 forcing terms. Air-sea thermal stability effects on the transfer velocity for CO2 are most important at mid-high wind speeds. Where cold air from continental interiors is transported over relatively warm oceanic waters, the transfer velocities are enhanced over neutral stability values. The depression of computed kCO2 values when warm air resides over cold water is especially important, due to asymmetry in the stability dependence of the drag coefficient. The stability influence is 20% to 50% of kCO2 for modest air-sea temperature differences and up to 100% for extreme cases of stability or instability. The stability dependent “whitecap” model, using the transfer velocity coefficients for whitecap and nonwhitecap areas suggested by Monahan and Spillane (1984), produces CO2 transfer velocities that range from 13 to 50 cm h−1 for a monthly mean. High-latitude regions of both hemispheres experience winter season means of 40 to 50 cm h−1. The global area-weighted mean CO2 transfer velocity is 19.2 cm h−1, in reasonable agreement with the 14C estimate of Broecker and Peng (1974). Although consistent with global 14C estimates, the initial version of the model predicts a factor of 2 to 3 higher CO2 transfer velocities over areas with low wind speeds relative to the parameterizations of Liss and Merlivat (1986) and Tans et al. (1990). New transfer velocity coefficients for whitecap and nonwhitecap areas are suggested that bring the low wind speed results into better agreement with observations and other models. The calculations described here suggests that oceanic gas exchange with the atmosphere is sensitive to thermal stability at the air-sea interface. This specific, turbulence-related geophysical forcing may account for a portion of the observed scatter in previously obtained experimental data that has been correlated with wind speed alone.


Journal of Geophysical Research | 1999

A general circulation model based calculation of HCl and ClNO2 production from sea salt dechlorination: Reactive Chlorine Emissions Inventory

David J. Erickson; Christophe Seuzaret; William C. Keene; S. L. Gong

As part of the Reactive Chlorine Emissions Inventory, a global model of chemical processes in the marine boundary layer (MBL), Marine Aerosol and Gas Phase Interactions (MAGPI), was developed to calculate direct monthly production of HCl and ClNO2 from sea salt dechlorination on a 2.8 × 2.8 latitude-longitude grid. Sea salt mass and size distributions and associated surface exchange fluxes were calculated using the Canadian General Circulation Model; integrated annual production of sea salt Cl− was 1785 Tg Cl yr−1. Corresponding distributions of gas-phase HNO3, SO2, N2O5, H2O2, O3, H2SO4 and NH3 were calculated using different global chemical transport models in which sea salt reactions were not considered. A chemical scheme was developed to estimate the monthly mean steady-state phase partitioning of product and reactant species at each grid point. Average annual gridded fluxes of HCl and ClNO2 varied spatially from 1 to 300 mg Cl m−2 yr−1 and from 1 to 8 mg Cl m−2 yr−1, respectively. Maxima occurred in polluted coastal regions of the North Atlantic, the western North Pacific and the Mediterranean where up to 20% of the total Cl and 80% of the sub-micron Cl volatilized. In remote oceanic regions, available acidity was insufficient to titrate all sea salt alkalinity, thus, significant HCl was not produced via acid displacement. However, in these regions virtually all HNO3 was scavenged by sea salt. The integrated annual global fluxes for HCl and ClNO2 were 7.6 Tg Cl yr−1 and 0.06 Tg Cl yr−1, respectively; virtually all in the Northern Hemisphere. Largest HCl and ClNO2 fluxes occur in northern hemisphere winter due to high sea salt loading and elevated HNO3, SO2 and N2O5 concentrations. 70% of the HCl dechlorination occurs on particles between 0.75 μm and 4 μm radius; ClNO2 volatilized from slightly larger particles. The aerosol pH of each particle size bin equilibrates towards the same value once the alkalinity has been titrated.


Journal of Photochemistry and Photobiology B-biology | 1998

Effects of enhanced solar ultraviolet radiation on biogeochemical cycles

Richard G. Zepp; Terry V. Callaghan; David J. Erickson

Abstract Effects of increased UV-B on emissions of carbon dioxide and carbon monoxide (CO) and on mineral nutrient cycling in the terrestrial biosphere have been confirmed by recent studies of a range of species and ecosystems. The effects, both in magnitude and direction, of UV-B radiation on trace-gas emissions and mineral nutrient cycling are species specific and operate on a number of processes. These processes include changes in the chemical composition in living plant tissue, photodegradation (breakdown by light) of dead plant matter, including litter, release of carbon monoxide from vegetation previously charred by fire, changes in the communities of microbial decomposers, and effects on nitrogen-fixing microorganisms and plants. Long-term experiments are in place to examine UV-B effects on carbon capture and storage in biomass within natural terrestrial ecosystems. Studies in natural aquatic ecosystems have indicated that organic matter is the primary regulator of UV-B penetration. Changes in the organic matter, caused by enhanced UV-B reinforced by changes in climate and acidification, result in clarification of the water and changes in light quality that have broad impacts on the effects of enhanced UV-B on aquatic biogeochemical cycles. Increased UV-B has positive and negative impacts on microbial activity in aquatic ecosystems that can affect carbon and mineral nutrient cycling as well as the uptake and release of greenhouse and chemically reactive gases. Photoinhibition of surface aquatic microorganisms by UV-B can be partially offset by photodegradation of dissolved organic matter to produce substrates, such as organic acids and ammonium, that stimulate microbial activity. Modeling and experimental approaches are being developed to predict and measure the interactions and feedbacks between climate change and UV-B-induced changes in marine and terrestrial biogeochemical cycles. These interactions include alterations in the oxidative environment in the upper ocean and in the marine boundary layer and oceanic production and release of CO, volatile organic compounds (VOC), and reactive oxygen species (ROS, such as hydrogen peroxide and hydroxyl radicals). Climate-related changes in temperature and water supply in terrestrial ecosystems interact with UV-B radiation through biogeochemical processes operating on a wide range of time scales.

Collaboration


Dive into the David J. Erickson's collaboration.

Top Co-Authors

Avatar

Robert J. Oglesby

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Marcia L. Branstetter

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Forrest M. Hoffman

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard G. Zepp

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose L. Hernandez

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony W. King

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge