Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Erle is active.

Publication


Featured researches published by David J. Erle.


Nature Medicine | 2002

Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma

Douglas A. Kuperman; Xiaozhu Huang; Laura L. Koth; Grace H.-F. Chang; Gregory Dolganov; Zhou Zhu; Jack A. Elias; Dean Sheppard; David J. Erle

Asthma is an increasingly common disease that remains poorly understood and difficult to manage. This disease is characterized by airway hyperreactivity (AHR, defined by exaggerated airflow obstruction in response to bronchoconstrictors), mucus overproduction and chronic eosinophilic inflammation. AHR and mucus overproduction are consistently linked to asthma symptoms and morbidity. Asthma is mediated by Th2 lymphocytes, which produce a limited repertoire of cytokines, including interleukin-4 (IL-4), IL-5, IL-9 and IL-13. Although each of these cytokines has been implicated in asthma, IL-13 is now thought to be especially critical. In animal models of allergic asthma, blockade of IL-13 markedly inhibits allergen-induced AHR, mucus production and eosinophilia. Furthermore, IL-13 delivery to the airway causes all of these effects. IL-13 is thus both necessary and sufficient for experimental models of asthma. However, the IL-13-responsive cells causing these effects have not been identified. Here we show that mice lacking signal transducer and activator of transcription 6 (STAT6) were protected from all pulmonary effects of IL-13. Reconstitution of STAT6 only in epithelial cells was sufficient for IL-13-induced AHR and mucus production in the absence of inflammation, fibrosis or other lung pathology. These results demonstrate the importance of direct effects of IL-13 on epithelial cells in causing two central features of asthma.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Systemically dispersed innate IL-13–expressing cells in type 2 immunity

April Price; Hong-Erh Liang; Brandon M. Sullivan; R. Lee Reinhardt; Chris J. Eisley; David J. Erle; Richard M. Locksley

Type 2 immunity is a stereotyped host response to allergens and parasitic helminths that is sustained in large part by the cytokines IL-4 and IL-13. Recent advances have called attention to the contributions by innate cells in initiating adaptive immunity, including a novel lineage-negative population of cells that secretes IL-13 and IL-5 in response to the epithelial cytokines IL-25 and IL-33. Here, we use IL-4 and IL-13 reporter mice to track lineage-negative innate cells that arise during type 2 immunity or in response to IL-25 and IL-33 in vivo. Unexpectedly, lineage-negative IL-25 (and IL-33) responsive cells are widely distributed in tissues of the mouse and are particularly prevalent in mesenteric lymph nodes, spleen, and liver. These cells expand robustly in response to exogenous IL-25 or IL-33 and after infection with the helminth Nippostrongylus brasiliensis, and they are the major innate IL-13–expressing cells under these conditions. Activation of these cells using IL-25 is sufficient for worm clearance, even in the absence of adaptive immunity. Widely dispersed innate type 2 helper cells, which we designate Ih2 cells, play an integral role in type 2 immune responses.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids

Prescott G. Woodruff; Homer A. Boushey; Gregory Dolganov; Christopher S. Barker; Yee Hwa Yang; Samantha Donnelly; Almut Ellwanger; Sukhvinder S. Sidhu; Trang Dao-Pick; Carlos Pantoja; David J. Erle; Keith R. Yamamoto; John V. Fahy

Airway inflammation and epithelial remodeling are two key features of asthma. IL-13 and other cytokines produced during T helper type 2 cell-driven allergic inflammation contribute to airway epithelial goblet cell metaplasia and may alter epithelial–mesenchymal signaling, leading to increased subepithelial fibrosis or hyperplasia of smooth muscle. The beneficial effects of corticosteroids in asthma could relate to their ability to directly or indirectly decrease epithelial cell activation by inflammatory cells and cytokines. To identify markers of epithelial cell dysfunction and the effects of corticosteroids on epithelial cells in asthma, we studied airway epithelial cells collected from asthmatic subjects enrolled in a randomized controlled trial of inhaled corticosteroids, from healthy subjects and from smokers (disease control). By using gene expression microarrays, we found that chloride channel, calcium-activated, family member 1 (CLCA1), periostin, and serine peptidase inhibitor, clade B (ovalbumin), member 2 (serpinB2) were up-regulated in asthma but not in smokers. Corticosteroid treatment down-regulated expression of these three genes and markedly up-regulated expression of FK506-binding protein 51 (FKBP51). Whereas high baseline expression of CLCA1, periostin, and serpinB2 was associated with a good clinical response to corticosteroids, high expression of FKBP51 was associated with a poor response. By using airway epithelial cells in culture, we found that IL-13 increased expression of CLCA1, periostin, and serpinB2, an effect that was suppressed by corticosteroids. Corticosteroids also induced expression of FKBP51. Taken together, our findings show that airway epithelial cells in asthma have a distinct activation profile and identify direct and cell-autonomous effects of corticosteroid treatment on airway epithelial cells that relate to treatment responses and can now be the focus of specific mechanistic studies.


Journal of Biological Chemistry | 1998

Integrin beta cytoplasmic domains differentially bind to cytoskeletal proteins.

Martin Pfaff; Shouchun Liu; David J. Erle; Mark H. Ginsberg

Integrin cytoplasmic domains connect these receptors to the cytoskeleton. Furthermore, integrin-cytoskeletal interactions involve ligand binding (occupancy) to the integrin extracellular domain and clustering of the integrin. To construct mimics of the cytoplasmic face of an occupied and clustered integrin, we fused the cytoplasmic domains of integrin β subunits to an N-terminal sequence containing four heptad repeat sequences. The heptad repeats form coiled coil dimers in which the cytoplasmic domains are parallel dimerized and held in an appropriate vertical stagger. In these mimics we found 1) that both conformation and protein binding properties are altered by insertion of Gly spacers C-terminal to the heptad repeat sequences; 2) that the cytoskeletal proteins talin and filamin are among the polypeptides that bind to the integrin β1A tail. Filamin, but not talin binding, is enhanced by the insertion of Gly spacers; 3) binding of both cytoskeletal proteins to β1A is direct and specific, since it occurs with purified talin and filamin and is inhibited in a point mutant (β1A(Y788A)) or in splice variants (β1B, β1C) known to disrupt cytoskeletal associations of β1 integrins; 4) that the muscle-specific splice variant, β1D, binds talin more tightly than β1A and is therefore predicted to form more stable cytoskeletal associations; and 5) that the β7 cytoplasmic domain binds filamin better than β1A. The structural specificity of these associations suggests that these mimics offer a useful approach for the analysis of the interactions and structure of the integrin cytoplasmic face.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The protein disulfide isomerase AGR2 is essential for production of intestinal mucus

Sung-Woo Park; Guohua Zhen; Catherine Verhaeghe; Yasuhiro Nakagami; Louis T. Nguyenvu; Andrea J. Barczak; Nigel Killeen; David J. Erle

Protein disulfide isomerases (PDIs) aid protein folding and assembly by catalyzing formation and shuffling of cysteine disulfide bonds in the endoplasmic reticulum (ER). Many members of the PDI family are expressed in mammals, but the roles of specific PDIs in vivo are poorly understood. A recent homology-based search for additional PDI family members identified anterior gradient homolog 2 (AGR2), a protein originally presumed to be secreted by intestinal epithelial cells. Here, we show that AGR2 is present within the ER of intestinal secretory epithelial cells and is essential for in vivo production of the intestinal mucin MUC2, a large, cysteine-rich glycoprotein that forms the protective mucus gel lining the intestine. A cysteine residue within the AGR2 thioredoxin-like domain forms mixed disulfide bonds with MUC2, indicating a direct role for AGR2 in mucin processing. Mice lacking AGR2 were viable but were highly susceptible to colitis, indicating a critical role for AGR2 in protection from disease. We conclude that AGR2 is a unique member of the PDI family, with a specialized and nonredundant role in intestinal mucus production.


Journal of Clinical Investigation | 2007

Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients

Jun Araya; Stephanie Cambier; Jennifer A. Markovics; Paul J. Wolters; David M. Jablons; Arthur Hill; Walter E. Finkbeiner; Kirk D. Jones; V. Courtney Broaddus; Dean Sheppard; Andrea Barzcak; Yuanyuan Xiao; David J. Erle; Stephen L. Nishimura

Squamous metaplasia (SM) is common in smokers and is associated with airway obstruction in chronic obstructive pulmonary disease (COPD). A major mechanism of airway obstruction in COPD is thickening of the small airway walls. We asked whether SM actively contributes to airway wall thickening through alteration of epithelial-mesenchymal interactions in COPD. Using immunohistochemical staining, airway morphometry, and fibroblast culture of lung samples from COPD patients; genome-wide analysis of an in vitro model of SM; and in vitro modeling of human airway epithelial-mesenchymal interactions, we provide evidence that SM, through the increased secretion of IL-1beta, induces a fibrotic response in adjacent airway fibroblasts. We identify a pivotal role for integrin-mediated TGF-beta activation in amplifying SM and driving IL-1beta-dependent profibrotic mesenchymal responses. Finally, we show that SM correlates with increased severity of COPD and that fibroblast expression of the integrin alpha(v)beta(8), which is the major mediator of airway fibroblast TGF-beta activation, correlated with disease severity and small airway wall thickening in COPD. Our findings have identified TGF-beta as a potential therapeutic target for COPD.


Clinical & Experimental Allergy | 2005

Tissue-selective mast cell reconstitution and differential lung gene expression in mast cell-deficient KitW-sh/KitW-sh sash mice

Paul J. Wolters; J. Mallen-St. Clair; C. C. Lewis; S. A. Villalta; P. Baluk; David J. Erle; George H. Caughey

Background Mast cell‐deficient KitW/KitW‐v mice are an important resource for studying mast cell functions in vivo. However, because they are compound heterozygotes in a mixed genetic background and are infertile, they cannot be crossed easily with other mice.


Journal of Cell Biology | 2014

The cell biology of asthma

David J. Erle; Dean Sheppard

The clinical manifestations of asthma are caused by obstruction of the conducting airways of the lung. Two airway cell types are critical for asthma pathogenesis: epithelial cells and smooth muscle cells. Airway epithelial cells, which are the first line of defense against inhaled pathogens and particles, initiate airway inflammation and produce mucus, an important contributor to airway obstruction. The other main cause of airway obstruction is contraction of airway smooth muscle. Complementary experimental approaches involving cultured cells, animal models, and human clinical studies have provided many insights into diverse mechanisms that contribute to airway epithelial and smooth muscle cell pathology in this complex disease.


American Journal of Respiratory and Critical Care Medicine | 2012

Airway Epithelial miRNA Expression Is Altered in Asthma

Owen D. Solberg; Edwin Justin Ostrin; Michael I. Love; Jeffrey C. Peng; Nirav R. Bhakta; Lydia Hou; Christine P. Nguyen; Margaret Solon; Cindy Nguyen; Andrea J. Barczak; Lorna Zlock; Denitza P. Blagev; Walter E. Finkbeiner; K. Mark Ansel; Joseph R. Arron; David J. Erle; Prescott G. Woodruff

RATIONALE Changes in airway epithelial cell differentiation, driven in part by IL-13, are important in asthma. Micro-RNAs (miRNAs) regulate cell differentiation in many systems and could contribute to epithelial abnormalities in asthma. OBJECTIVES To determine whether airway epithelial miRNA expression is altered in asthma and identify IL-13-regulated miRNAs. METHODS We used miRNA microarrays to analyze bronchial epithelial brushings from 16 steroid-naive subjects with asthma before and after inhaled corticosteroids, 19 steroid-using subjects with asthma, and 12 healthy control subjects, and the effects of IL-13 and corticosteroids on cultured bronchial epithelial cells. We used quantitative polymerase chain reaction to confirm selected microarray results. MEASUREMENTS AND MAIN RESULTS Most (12 of 16) steroid-naive subjects with asthma had a markedly abnormal pattern of bronchial epithelial miRNA expression by microarray analysis. Compared with control subjects, 217 miRNAs were differentially expressed in steroid-naive subjects with asthma and 200 in steroid-using subjects with asthma (false discovery rate < 0.05). Treatment with inhaled corticosteroids had modest effects on miRNA expression in steroid-naive asthma, inducing a statistically significant (false discovery rate < 0.05) change for only nine miRNAs. qPCR analysis confirmed differential expression of 22 miRNAs that were highly differentially expressed by microarrays. IL-13 stimulation recapitulated changes in many differentially expressed miRNAs, including four members of the miR-34/449 family, and these changes in miR-34/449 family members were resistant to corticosteroids. CONCLUSIONS Dramatic alterations of airway epithelial cell miRNA levels are a common feature of asthma. These alterations are only modestly corrected by inhaled corticosteroids. IL-13 effects may account for some of these alterations, including repression of miR-34/449 family members that have established roles in airway epithelial cell differentiation. Clinical trial registered with www.clinicaltrials.gov (NCT 00595153).


Journal of Immunology | 2009

CD11b+ Myeloid Cells Are the Key Mediators of Th2 Cell Homing into the Airway in Allergic Inflammation

Benjamin D. Medoff; Edward Seung; Sandra Hong; Seddon Y. Thomas; Barry P. Sandall; Jeremy S. Duffield; Douglas A. Kuperman; David J. Erle; Andrew D. Luster

STAT6-mediated chemokine production in the lung is required for Th2 lymphocyte and eosinophil homing into the airways in allergic pulmonary inflammation, and thus is a potential therapeutic target in asthma. However, the critical cellular source of STAT6-mediated chemokine production has not been defined. In this study, we demonstrate that STAT6 in bone marrow-derived myeloid cells was sufficient for the production of CCL17, CCL22, CCL11, and CCL24 and for Th2 lymphocyte and eosinophil recruitment into the allergic airway. In contrast, STAT6 in airway-lining cells did not mediate chemokine production or support cellular recruitment. Selective depletion of CD11b+ myeloid cells in the lung identified these cells as the critical cellular source for the chemokines CCL17 and CCL22. These data reveal that CD11b+ myeloid cells in the lung help orchestrate the adaptive immune response in asthma, in part, through the production of STAT6-inducible chemokines and the recruitment of Th2 lymphocytes into the airway.

Collaboration


Dive into the David J. Erle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dean Sheppard

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaozhu Huang

University of California

View shared research outputs
Top Co-Authors

Avatar

Guohua Zhen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bettina Levänen

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge