Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Reiner is active.

Publication


Featured researches published by David J. Reiner.


The Journal of Neuroscience | 2014

Glucagon-Like Peptide-1 Receptor Activation in the Nucleus Accumbens Core Suppresses Feeding by Increasing Glutamatergic AMPA/Kainate Signaling

Elizabeth G. Mietlicki-Baase; Pavel I. Ortinski; David J. Reiner; Christopher G. Sinon; James E. McCutcheon; R. Christopher Pierce; Mitchell F. Roitman; Matthew R. Hayes

Glucagon-like peptide-1 receptor (GLP-1R) activation in the nucleus accumbens (NAc) core is pharmacologically and physiologically relevant for regulating palatable food intake. Here, we assess whether GLP-1R signaling in the NAc core of rats modulates GABAergic medium spiny neurons (MSNs) through presynaptic-glutamatergic and/or presynaptic-dopaminergic signaling to control feeding. First, ex vivo fast-scan cyclic voltammetry showed that the GLP-1R agonist exendin-4 (Ex-4) does not alter dopamine release in the NAc core. Instead, support for a glutamatergic mechanism was provided by ex vivo electrophysiological analyses showing that Ex-4 activates presynaptic GLP-1Rs in the NAc core to increase the activity of MSNs via a glutamatergic, AMPA/kainate receptor-mediated mechanism, indicated by increased mEPSC frequency and decreased paired pulse ratio in core MSNs. Only a small, direct excitatory effect on MSNs by Ex-4 was observed, suggesting that the contribution of postsynaptic GLP-1R to MSN activity is minimal. The behavioral relevance of the electrophysiological data was confirmed by the finding that intracore injection of the AMPA/kainate receptor antagonist CNQX attenuated the ability of NAc core GLP-1R activation by Ex-4 microinjection to suppress food intake and body weight gain; in contrast, intracore NMDA receptor blockade by AP-5 did not inhibit the energy balance effects of NAc core Ex-4. Together, these data provide evidence for a novel glutamatergic, but not dopaminergic, mechanism by which NAc core GLP-1Rs promote negative energy balance.


Neuropsychopharmacology | 2015

Amylin Modulates the Mesolimbic Dopamine System to Control Energy Balance

Elizabeth G. Mietlicki-Baase; David J. Reiner; Jackson J. Cone; Diana R. Olivos; Lauren E. McGrath; Derek J. Zimmer; Mitchell F. Roitman; Matthew R. Hayes

Amylin acts in the CNS to reduce feeding and body weight. Recently, the ventral tegmental area (VTA), a mesolimbic nucleus important for food intake and reward, was identified as a site-of-action mediating the anorectic effects of amylin. However, the long-term physiological relevance and mechanisms mediating the intake-suppressive effects of VTA amylin receptor (AmyR) activation are unknown. Data show that the core component of the AmyR, the calcitonin receptor (CTR), is expressed on VTA dopamine (DA) neurons and that activation of VTA AmyRs reduces phasic DA in the nucleus accumbens core (NAcC). Suppression in NAcC DA mediates VTA amylin-induced hypophagia, as combined NAcC D1/D2 receptor agonists block the intake-suppressive effects of VTA AmyR activation. Knockdown of VTA CTR via adeno-associated virus short hairpin RNA resulted in hyperphagia and exacerbated body weight gain in rats maintained on high-fat diet. Collectively, these findings show that VTA AmyR signaling controls energy balance by modulating mesolimbic DA signaling.


The Journal of Neuroscience | 2016

Astrocytes Regulate GLP-1 Receptor-Mediated Effects on Energy Balance.

David J. Reiner; Elizabeth G. Mietlicki-Baase; Lauren E. McGrath; Derek J. Zimmer; Kendra K. Bence; Gregory L. Sousa; Vaibhav R. Konanur; Joanna Krawczyk; David H. Burk; Scott E. Kanoski; Gerlinda E. Hermann; Richard C. Rogers; Matthew R. Hayes

Astrocytes are well established modulators of extracellular glutamate, but their direct influence on energy balance-relevant behaviors is largely understudied. As the anorectic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists are partly mediated by central modulation of glutamatergic signaling, we tested the hypothesis that astrocytic GLP-1R signaling regulates energy balance in rats. Central or peripheral administration of a fluorophore-labeled GLP-1R agonist, exendin-4, localizes within astrocytes and neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus critical for energy balance control. This effect is mediated by GLP-1R, as the uptake of systemically administered fluorophore-tagged exendin-4 was blocked by central pretreatment with the competitive GLP-1R antagonist exendin-(9–39). Ex vivo analyses show prolonged exendin-4-induced activation (live cell calcium signaling) of NTS astrocytes and neurons; these effects are also attenuated by exendin-(9–39), indicating mediation by the GLP-1R. In vitro analyses show that the application of GLP-1R agonists increases cAMP levels in astrocytes. Immunohistochemical analyses reveal that endogenous GLP-1 axons form close synaptic apposition with NTS astrocytes. Finally, pharmacological inhibition of NTS astrocytes attenuates the anorectic and body weight-suppressive effects of intra-NTS GLP-1R activation. Collectively, data demonstrate a role for NTS astrocytic GLP-1R signaling in energy balance control. SIGNIFICANCE STATEMENT Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce food intake and are approved by the Food and Drug Administration for the treatment of obesity, but the cellular mechanisms underlying the anorectic effects of GLP-1 require further investigation. Astrocytes represent a major cellular population in the CNS that regulates neurotransmission, yet the role of astrocytes in mediating energy balance is largely unstudied. The current data provide novel evidence that astrocytes within the NTS are relevant for energy balance control by GLP-1 signaling. Here, we report that GLP-1R agonists activate and internalize within NTS astrocytes, while behavioral data suggest the pharmacological relevance of NTS astrocytic GLP-1R activation for food intake and body weight. These findings support a previously unknown role for CNS astrocytes in energy balance control by GLP-1 signaling.


Neuropsychopharmacology | 2016

Glucagon-Like Peptide-1 Receptor Activation in the Ventral Tegmental Area Decreases the Reinforcing Efficacy of Cocaine

Heath D. Schmidt; Elizabeth G. Mietlicki-Baase; Kelsey Y. Ige; John J. Maurer; David J. Reiner; Derek J. Zimmer; Duncan Van Nest; Leonardo A. Guercio; Mathieu E. Wimmer; Diana R. Olivos; Bart C. De Jonghe; Matthew R. Hayes

Cocaine addiction continues to be a significant public health problem for which there are currently no effective FDA-approved treatments. Thus, there is a clear need to identify and develop novel pharmacotherapies for cocaine addiction. Recent evidence indicates that activation of glucagon-like peptide-1 (GLP-1) receptors in the ventral tegmental area (VTA) reduces intake of highly palatable food. As the neural circuits and neurobiological mechanisms underlying drug taking overlap to some degree with those regulating food intake, these findings suggest that activation of central GLP-1 receptors may also attenuate cocaine taking. Here, we show that intra-VTA administration of the GLP-1 receptor agonist exendin-4 (0.05 μg) significantly reduced cocaine, but not sucrose, self-administration in rats. We also demonstrate that cocaine taking is associated with elevated plasma corticosterone levels and that systemic infusion of cocaine activates GLP-1-expressing neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus that projects monosynaptically to the VTA. To determine the potential mechanisms by which cocaine activates NTS GLP-1-expressing neurons, we microinjected corticosterone (0.5 μg) directly into the hindbrain fourth ventricle. Intraventricular corticosterone attenuated cocaine self-administration and this effect was blocked in animals pretreated with the GLP-1 receptor antagonist exendin-(9–39) (10 μg) in the VTA. Finally, AAV-shRNA-mediated knockdown of VTA GLP-1 receptors was sufficient to augment cocaine self-administration. Taken together, these findings indicate that increased activation of NTS GLP-1-expressing neurons by corticosterone may represent a homeostatic response to cocaine taking, thereby reducing the reinforcing efficacy of cocaine. Therefore, central GLP-1 receptors may represent a novel target for cocaine addiction pharmacotherapies.


Neuropsychopharmacology | 2017

Endogenous Glucagon-like Peptide-1 Receptor Signaling in the Nucleus Tractus Solitarius is Required for Food Intake Control

Amber L. Alhadeff; Blake D Mergler; Derek J. Zimmer; Christopher A. Turner; David J. Reiner; Heath D. Schmidt; Harvey J. Grill; Matthew R. Hayes

Alhough the glucagon-like peptide-1 (GLP-1) system is critical to energy balance control and is a target for obesity pharmacotherapies, the receptor-population-mediating effects of endogenous GLP-1 signaling are not fully understood. To address this, we developed a novel adeno-associated virus (AAV-GLP-1R) that utilizes short hairpin RNA to chronically knock down GLP-1 receptors (GLP-1R) in rats. As pharmacological studies highlight the hindbrain nucleus tractus solitarius (NTS) as a brain region important for GLP-1R-mediated effects on energy balance, AAV-GLP-1R was injected into the NTS to examine the role of endogenous NTS GLP-1R signaling in energy balance control. Chow intake and meal size were significantly increased following chronic NTS GLP-1R knockdown. In addition, NTS GLP-1R knockdown significantly increased self-administration of palatable food under both fixed and progressive ratio schedules of reinforcement. Collectively, these data demonstrate that endogenous NTS GLP-1R signaling is required for the control of food intake and motivation to feed, and provide a new strategy to investigate the importance of distinct GLP-1R populations in the control of a variety of functions.


Molecular Psychiatry | 2018

A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling

Ted M. Hsu; Emily E. Noble; Clarissa M. Liu; Alyssa M. Cortella; Vaibhav R. Konanur; Andrea N. Suarez; David J. Reiner; Joel D. Hahn; Matthew R. Hayes; Scott E. Kanoski

The hippocampus and the medial prefrontal cortex (mPFC) are traditionally associated with regulating memory and executive function, respectively. The contribution of these brain regions to food intake control, however, is poorly understood. The present study identifies a novel neural pathway through which monosynaptic glutamatergic ventral hippocampal field CA1 (vCA1) to mPFC connectivity inhibits food-motivated behaviors through vCA1 glucagon-like peptide-1 receptor (GLP-1R). Results demonstrate that vCA1-targeted RNA interference-mediated GLP-1R knockdown increases motivated operant responding for palatable food. Chemogenetic disconnection of monosynaptic glutamatergic vCA1 to mPFC projections using designer receptors exclusively activated by designer drugs (DREADDs)-mediated synaptic silencing ablates the food intake and body weight reduction following vCA1 GLP-1R activation. Neuropharmacological experiments further reveal that vCA1 GLP-1R activation reduces food intake and inhibits impulsive operant responding for palatable food via downstream communication to mPFC NMDA receptors. Overall these findings identify a novel neural pathway regulating higher-order cognitive aspects of feeding behavior.


Biological Psychiatry | 2017

Amylin Acts in the Lateral Dorsal Tegmental Nucleus to Regulate Energy Balance Through Gamma-Aminobutyric Acid Signaling

David J. Reiner; Elizabeth G. Mietlicki-Baase; Diana R. Olivos; Lauren E. McGrath; Derek J. Zimmer; Kieran Koch-Laskowski; Joanna Krawczyk; Christopher A. Turner; Emily E. Noble; Joel D. Hahn; Heath D. Schmidt; Scott E. Kanoski; Matthew R. Hayes

BACKGROUND The pancreatic- and brain-derived hormone amylin promotes negative energy balance and is receiving increasing attention as a promising obesity therapeutic. However, the neurobiological substrates mediating amylins effects are not fully characterized. We postulated that amylin acts in the lateral dorsal tegmental nucleus (LDTg), an understudied neural processing hub for reward and homeostatic feeding signals. METHODS We used immunohistochemical and quantitative polymerase chain reaction analyses to examine expression of the amylin receptor complex in rat LDTg tissue. Behavioral experiments were performed to examine the mechanisms underlying the hypophagic effects of amylin receptor activation in the LDTg. RESULTS Immunohistochemical and quantitative polymerase chain reaction analyses show expression of the amylin receptor complex in the LDTg. Activation of LDTg amylin receptors by the agonist salmon calcitonin dose-dependently reduces body weight, food intake, and motivated feeding behaviors. Acute pharmacological studies and longer-term adeno-associated viral knockdown experiments indicate that LDTg amylin receptor signaling is physiologically and potentially preclinically relevant for energy balance control. Finally, immunohistochemical data indicate that LDTg amylin receptors are expressed on gamma-aminobutyric acidergic neurons, and behavioral results suggest that local gamma-aminobutyric acid receptor signaling mediates the hypophagia after LDTg amylin receptor activation. CONCLUSIONS These findings identify the LDTg as a novel nucleus with therapeutic potential in mediating amylins effects on energy balance through gamma-aminobutyric acid receptor signaling.


PLOS ONE | 2015

Time-Dependent Protection of CB2 Receptor Agonist in Stroke

Seong-Jin Yu; David J. Reiner; Hui Shen; Kou-Jen Wu; Qing-Rong Liu; Yun Wang

Recent studies have indicated that type 2 cannabinoid receptor (CB2R) agonists reduce neurodegeneration after brain injury through anti-inflammatory activity. The purpose of this study was to examine the time-dependent interaction of CB2R and inflammation in stroke brain. Adult male rats were subjected to right middle cerebral artery occlusion (MCAo). CB2R mRNA expression was significantly elevated >20 fold on day 2, peaked >40-fold on day 5, and normalized on day 10 post-stroke. Inflammatory markers IBA1 and TLR4 were significantly upregulated 15 fold until day 5 after MCAo. Because of the delayed upregulation of CB2R and IBA1, we next treated animals daily with CB2R agonist AM1241 or anti-inflammatory PPAR-γ agonist pioglitazone from 2 to 5 days after MCAo. Delayed treatment with pioglitazone significantly reduced abnormal neurological scores and body asymmetry as well as brain infarction in stroke animals. No behavioral improvement or reduction in brain infarction was found in animals receiving AM1241. Pioglitazone, but not AM1241, significantly reduced IBA1 expression in the stroke cortex, suggesting that delayed treatment with AM1241 failed to alter ischemia-mediated IBA-1 upregulation. In contrast, pretreatment with AM1241 significantly reduced brain infarction and neurological deficits. In conclusion, our data support a time-dependent neuroprotection of CB2 agonist in an animal model of stroke. Delayed post- treatment with PPAR-γ agonist induced behavioral recovery and microglial suppression; early treatment with CB2R agonist suppressed neurodegeneration in stroke animals.


Neuropharmacology | 2017

Amylin receptor activation in the ventral tegmental area reduces motivated ingestive behavior.

Elizabeth G. Mietlicki-Baase; Lauren E. McGrath; Kieran Koch-Laskowski; Joanna Krawczyk; David J. Reiner; Tram Pham; Chan Tran N. Nguyen; Christopher A. Turner; Diana R. Olivos; Mathieu E. Wimmer; Heath D. Schmidt; Matthew R. Hayes

&NA; Amylin is produced in the pancreas and the brain, and acts centrally to reduce feeding and body weight. Recent data show that amylin can act in the ventral tegmental area (VTA) to reduce palatable food intake and promote negative energy balance, but the behavioral mechanisms by which these effects occur are not fully understood. The ability of VTA amylin signaling to reduce intake of specific palatable macronutrients (fat or carbohydrate) was tested in rats in several paradigms, including one‐bottle acceptance tests, two‐bottle choice tests, and a free‐choice diet. Data show that VTA amylin receptor activation with the amylin receptor agonist salmon calcitonin (sCT) preferentially and potently reduces intake of fat, with more variable suppression of sucrose intake. Intake of a non‐nutritive sweetener is also decreased by intra‐VTA administration of sCT. As several feeding‐related signals that act in the mesolimbic system also impact motivated behaviors besides feeding, we tested the hypothesis that the suppressive effects of amylin signaling in the VTA extend to other motivationally relevant stimuli. Results show that intra‐VTA sCT reduces water intake in response to central administration of the dipsogenic peptide angiotensin II, but has no effect on ad libitum water intake in the absence of food. Importantly, open field and social interaction studies show that VTA amylin signaling does not produce anxiety‐like behaviors. Collectively, these findings reveal a novel ability of VTA amylin receptor activation to alter palatable macronutrient intake, and also demonstrate a broader role of VTA amylin signaling for the control of motivated ingestive behaviors beyond feeding. HighlightsVTA amylin receptor activation more potently reduces intake of fat than of sucrose.VTA amylin signaling reduces saccharin intake and stimulated water intake.Effects of VTA amylin on macronutrient intake depend on baseline food preferences.VTA amylin receptor activation does not induce anxiety‐like responses.


Physiology & Behavior | 2017

Daily supplementation of dietary protein improves the metabolic effects of GLP-1-based pharmacotherapy in lean and obese rats

Elizabeth G. Mietlicki-Baase; Kieran Koch-Laskowski; Lauren E. McGrath; Joanna Krawczyk; Tram Pham; Rinzin Lhamo; David J. Reiner; Matthew R. Hayes

Glucagon-like peptide-1 (GLP-1) is an incretin hormone released from intestinal L-cells in response to food entering into the gastrointestinal tract. GLP-1-based pharmaceuticals improve blood glucose regulation and reduce feeding. Specific macronutrients, when ingested, may trigger GLP-1 secretion and enhance the effects of systemic sitagliptin, a pharmacological inhibitor of DPP-IV (an enzyme that rapidly degrades GLP-1). In particular, macronutrient constituents found in dairy foods may act as potent secretagogues for GLP-1, and acute preclinical trials show that ingestion of dairy protein may represent a promising adjunct behavioral therapy in combination with sitagliptin. To test this hypothesis further, chow-maintained or high-fat diet (HFD)-induced obese rats received daily IP injections of sitagliptin (6mg/kg) or saline in combination with a twice-daily 8ml oral gavage of milk protein concentrate (MPC; 80/20% casein/whey; 0.5kcal/ml), soy protein (non-dairy control; 0.5kcal/ml) or 0.9% NaCl for two months. Food intake and body weight were recorded every 24-48h; blood glucose regulation was examined at baseline and at 3 and 6.5weeks via a 2h oral glucose tolerance test (OGTT; 25% glucose; 2g/kg). MPC and soy protein significantly suppressed cumulative caloric intake in HFD but not chow-maintained rats. AUC analyses for OGTT show suppression in glycemia by sitagliptin with MPC or soy in chow- and HFD-maintained rats, suggesting that chronic ingestion of dairy or soy proteins may augment endogenous GLP-1 signaling and the glycemic- and food intake-suppressive effects of DPP-IV inhibition.

Collaboration


Dive into the David J. Reiner's collaboration.

Top Co-Authors

Avatar

Matthew R. Hayes

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lauren E. McGrath

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott E. Kanoski

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Derek J. Zimmer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Joanna Krawczyk

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Diana R. Olivos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Emily E. Noble

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Heath D. Schmidt

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge