Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Spiro is active.

Publication


Featured researches published by David J. Spiro.


Science | 2007

Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes

Julie C. Dunning Hotopp; Michael E. Clark; Deodoro C. S. G. Oliveira; Jeremy M. Foster; Peter U. Fischer; Mónica C. Muñoz Torres; Jonathan D. Giebel; Nikhil Kumar; Nadeeza Ishmael; Shiliang Wang; Jessica Ingram; Rahul V. Nene; Jessica Shepard; Jeffrey Tomkins; Stephen Richards; David J. Spiro; Elodie Ghedin; Barton E. Slatko; Hervé Tettelin; John H. Werren

Although common among bacteria, lateral gene transfer—the movement of genes between distantly related organisms—is thought to occur only rarely between bacteria and multicellular eukaryotes. However, the presence of endosymbionts, such as Wolbachia pipientis, within some eukaryotic germlines may facilitate bacterial gene transfers to eukaryotic host genomes. We therefore examined host genomes for evidence of gene transfer events from Wolbachia bacteria to their hosts. We found and confirmed transfers into the genomes of four insect and four nematode species that range from nearly the entire Wolbachia genome (>1 megabase) to short (<500 base pairs) insertions. Potential Wolbachia-to-host transfers were also detected computationally in three additional sequenced insect genomes. We also show that some of these inserted Wolbachia genes are transcribed within eukaryotic cells lacking endosymbionts. Therefore, heritable lateral gene transfer occurs into eukaryotic hosts from their prokaryote symbionts, potentially providing a mechanism for acquisition of new genes and functions.


Science | 2007

Draft Genome of the Filarial Nematode Parasite Brugia malayi

Elodie Ghedin; Shiliang Wang; David J. Spiro; Elisabet Caler; Qi Zhao; Jonathan Crabtree; Jonathan E. Allen; Arthur L. Delcher; David B. Guiliano; Diego Miranda-Saavedra; Samuel V. Angiuoli; Todd Creasy; Paolo Amedeo; Brian J. Haas; Najib M. El-Sayed; Jennifer R. Wortman; Tamara Feldblyum; Luke J. Tallon; Michael C. Schatz; Martin Shumway; Hean Koo; Seth Schobel; Mihaela Pertea; Mihai Pop; Owen White; Geoffrey J. Barton; Clotilde K. S. Carlow; Michael J. Crawford; Jennifer Daub; Matthew W. Dimmic

Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.


Nature | 2005

Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution

Elodie Ghedin; Naomi Sengamalay; Martin Shumway; Jennifer Zaborsky; Tamara Feldblyum; Vik Subbu; David J. Spiro; Jeff Sitz; Hean Koo; Pavel Bolotov; Dmitry Dernovoy; Tatiana Tatusova; Yīmíng Bào; Kirsten St. George; Jill Taylor; David J. Lipman; Claire M. Fraser; Jeffery K. Taubenberger

Influenza viruses are remarkably adept at surviving in the human population over a long timescale. The human influenza A virus continues to thrive even among populations with widespread access to vaccines, and continues to be a major cause of morbidity and mortality. The virus mutates from year to year, making the existing vaccines ineffective on a regular basis, and requiring that new strains be chosen for a new vaccine. Less-frequent major changes, known as antigenic shift, create new strains against which the human population has little protective immunity, thereby causing worldwide pandemics. The most recent pandemics include the 1918 ‘Spanish’ flu, one of the most deadly outbreaks in recorded history, which killed 30–50 million people worldwide, the 1957 ‘Asian’ flu, and the 1968 ‘Hong Kong’ flu. Motivated by the need for a better understanding of influenza evolution, we have developed flexible protocols that make it possible to apply large-scale sequencing techniques to the highly variable influenza genome. Here we report the results of sequencing 209 complete genomes of the human influenza A virus, encompassing a total of 2,821,103 nucleotides. In addition to increasing markedly the number of publicly available, complete influenza virus genomes, we have discovered several anomalies in these first 209 genomes that demonstrate the dynamic nature of influenza transmission and evolution. This new, large-scale sequencing effort promises to provide a more comprehensive picture of the evolution of influenza viruses and of their pattern of transmission through human and animal populations. All data from this project are being deposited, without delay, in public archives.


Science | 2009

Sequencing and Analyses of All Known Human Rhinovirus Genomes Reveal Structure and Evolution

Ann C. Palmenberg; David J. Spiro; Ryan Kuzmickas; Shiliang Wang; Appolinaire Djikeng; Jennifer A. Rathe; Claire M. Fraser-Liggett; Stephen B. Liggett

Infection by human rhinovirus (HRV) is a major cause of upper and lower respiratory tract disease worldwide and displays considerable phenotypic variation. We examined diversity by completing the genome sequences for all known serotypes (n = 99). Superimposition of capsid crystal structure and optimal-energy RNA configurations established alignments and phylogeny. These revealed conserved motifs; clade-specific diversity, including a potential newly identified species (HRV-D); mutations in field isolates; and recombination. In analogy with poliovirus, a hypervariable 5′ untranslated region tract may affect virulence. A configuration consistent with nonscanning internal ribosome entry was found in all HRVs and may account for rapid translation. The data density from complete sequences of the reference HRVs provided high resolution for this degree of modeling and serves as a platform for full genome-based epidemiologic studies and antiviral or vaccine development.


PLOS Pathogens | 2008

The Evolutionary Genetics and Emergence of Avian Influenza Viruses in Wild Birds

Vivien G. Dugan; Rubing Chen; David J. Spiro; Naomi Sengamalay; Jennifer Zaborsky; Elodie Ghedin; Jacqueline M. Nolting; David E. Swayne; Jonathan A. Runstadler; G. M. Happ; Dennis A. Senne; Ruixue Wang; Richard D. Slemons; Edward C. Holmes; Jeffery K. Taubenberger

We surveyed the genetic diversity among avian influenza virus (AIV) in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA) and neuraminidase (NA) subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient “genome constellations,” continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses.


BMC Genomics | 2008

Viral genome sequencing by random priming methods

Appolinaire Djikeng; Rebecca A. Halpin; Ryan Kuzmickas; Jay V. DePasse; Jeremy I. Feldblyum; Naomi Sengamalay; Claudio L. Afonso; Xinsheng Zhang; Norman G Anderson; Elodie Ghedin; David J. Spiro

BackgroundMost emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are RNA viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is a better understanding of global viral diversity to enable better surveillance and prediction of pandemic threats; this will require rapid and flexible methods for complete viral genome sequencing.ResultsWe have adapted the SISPA methodology [1–3] to genome sequencing of RNA and DNA viruses. We have demonstrated the utility of the method on various types and sources of viruses, obtaining near complete genome sequence of viruses ranging in size from 3,000–15,000 kb with a median depth of coverage of 14.33. We used this technique to generate full viral genome sequence in the presence of host contaminants, using viral preparations from cell culture supernatant, allantoic fluid and fecal matter.ConclusionThe method described is of great utility in generating whole genome assemblies for viruses with little or no available sequence information, viruses from greatly divergent families, previously uncharacterized viruses, or to more fully describe mixed viral infections.


Emerging Infectious Diseases | 2007

Genome Analysis Linking Recent European and African Influenza (H5N1) Viruses

Carl Kingsford; David J. Spiro; Daniel Janies; Mona M. Aly; Ian H. Brown; Emmanuel Couacy-Hymann; Gian Mario De Mia; Do Huu Dung; Annalisa Guercio; Tony Joannis; Ali Safar Maken Ali; Azizullah Osmani; Iolanda Padalino; Magdi D. Saad; Vladimir Savić; Naomi Sengamalay; Samuel L. Yingst; Jennifer Zaborsky; Olga Zorman-Rojs; Elodie Ghedin; Ilaria Capua

Although linked, these viruses are distinct from earlier outbreak strains.


PLOS Pathogens | 2008

Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918.

Martha I. Nelson; Cécile Viboud; Lone Simonsen; Ryan T. Bennett; Sara B. Griesemer; Kirsten St. George; Jill Taylor; David J. Spiro; Naomi Sengamalay; Elodie Ghedin; Jeffery K. Taubenberger; Edward C. Holmes

The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized.


PLOS Pathogens | 2006

Stochastic processes are key determinants of short-term evolution in influenza a virus.

Martha I. Nelson; Lone Simonsen; Cécile Viboud; Mark A. Miller; Jill Taylor; Kirsten St. George; Sara B. Griesemer; Elodie Ghedin; Naomi Sengamalay; David J. Spiro; Igor Volkov; Bryan T. Grenfell; David J. Lipman; Jeffery K. Taubenberger; Edward C. Holmes

Understanding the evolutionary dynamics of influenza A virus is central to its surveillance and control. While immune-driven antigenic drift is a key determinant of viral evolution across epidemic seasons, the evolutionary processes shaping influenza virus diversity within seasons are less clear. Here we show with a phylogenetic analysis of 413 complete genomes of human H3N2 influenza A viruses collected between 1997 and 2005 from New York State, United States, that genetic diversity is both abundant and largely generated through the seasonal importation of multiple divergent clades of the same subtype. These clades cocirculated within New York State, allowing frequent reassortment and generating genome-wide diversity. However, relatively low levels of positive selection and genetic diversity were observed at amino acid sites considered important in antigenic drift. These results indicate that adaptive evolution occurs only sporadically in influenza A virus; rather, the stochastic processes of viral migration and clade reassortment play a vital role in shaping short-term evolutionary dynamics. Thus, predicting future patterns of influenza virus evolution for vaccine strain selection is inherently complex and requires intensive surveillance, whole-genome sequencing, and phenotypic analysis.


PLOS Pathogens | 2009

Evolutionary dynamics of human rotaviruses: balancing reassortment with preferred genome constellations.

Sarah M. McDonald; Jelle Matthijnssens; John K. McAllen; Erin Hine; Larry Overton; Shiliang Wang; Philippe Lemey; Mark Zeller; Marc Van Ranst; David J. Spiro; John T. Patton

Group A human rotaviruses (RVs) are a major cause of severe gastroenteritis in infants and young children. Yet, aside from the genes encoding serotype antigens (VP7; G-type and VP4; P-type), little is known about the genetic make-up of emerging and endemic human RV strains. To gain insight into the diversity and evolution of RVs circulating at a single location over a period of time, we sequenced the eleven-segmented, double-stranded RNA genomes of fifty-one G3P[8] strains collected from 1974 to 1991 at Childrens Hospital National Medical Center, Washington, D. C. During this period, G1P[8] strains typically dominated, comprising on average 56% of RV infections each year in hospitalized children. A notable exception was in the 1976 and 1991 winter seasons when the incidence of G1P[8] infections decreased dramatically, a trend that correlated with a significant increase in G3P[8] infections. Our sequence analysis indicates that the 1976 season was characterized by the presence of several genetically distinct, co-circulating clades of G3P[8] viruses, which contained minor but significant differences in their encoded proteins. These 1976 lineages did not readily exchange gene segments with each other, but instead remained stable over the course of the season. In contrast, the 1991 season contained a single major clade, whose genome constellation was similar to one of the 1976 clades. The 1991 clade may have gained a fitness advantage after reassorting with as of yet unidentified RV strain(s). This study reveals for the first time that genetically distinct RV clades of the same G/P-type can co-circulate and cause disease. The findings from this study also suggest that, although gene segment exchange occurs, most reassortant strains are replaced over time by lineages with preferred genome constellations. Elucidation of the selective pressures that favor maintenance of RVs with certain sets of genes may be necessary to anticipate future vaccine needs.

Collaboration


Dive into the David J. Spiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiliang Wang

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Martha I. Nelson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cécile Viboud

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kirsten St. George

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara B. Griesemer

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

David E. Wentworth

National Center for Immunization and Respiratory Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge