Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elodie Ghedin is active.

Publication


Featured researches published by Elodie Ghedin.


Nature | 2009

The genome of the blood fluke Schistosoma mansoni

Matthew Berriman; Brian J. Haas; Philip T. LoVerde; R. Alan Wilson; Gary P. Dillon; Gustavo C. Cerqueira; Susan T. Mashiyama; Bissan Al-Lazikani; Luiza F. Andrade; Peter D. Ashton; Martin Aslett; Daniella Castanheira Bartholomeu; Gaëlle Blandin; Conor R. Caffrey; Avril Coghlan; Richard M. R. Coulson; Tim A. Day; Arthur L. Delcher; Ricardo DeMarco; Appoliniare Djikeng; Tina Eyre; John Gamble; Elodie Ghedin; Yong-Hong Gu; Christiane Hertz-Fowler; Hirohisha Hirai; Yuriko Hirai; Robin Houston; Alasdair Ivens; David A. Johnston

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.


Science | 2007

Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes

Julie C. Dunning Hotopp; Michael E. Clark; Deodoro C. S. G. Oliveira; Jeremy M. Foster; Peter U. Fischer; Mónica C. Muñoz Torres; Jonathan D. Giebel; Nikhil Kumar; Nadeeza Ishmael; Shiliang Wang; Jessica Ingram; Rahul V. Nene; Jessica Shepard; Jeffrey Tomkins; Stephen Richards; David J. Spiro; Elodie Ghedin; Barton E. Slatko; Hervé Tettelin; John H. Werren

Although common among bacteria, lateral gene transfer—the movement of genes between distantly related organisms—is thought to occur only rarely between bacteria and multicellular eukaryotes. However, the presence of endosymbionts, such as Wolbachia pipientis, within some eukaryotic germlines may facilitate bacterial gene transfers to eukaryotic host genomes. We therefore examined host genomes for evidence of gene transfer events from Wolbachia bacteria to their hosts. We found and confirmed transfers into the genomes of four insect and four nematode species that range from nearly the entire Wolbachia genome (>1 megabase) to short (<500 base pairs) insertions. Potential Wolbachia-to-host transfers were also detected computationally in three additional sequenced insect genomes. We also show that some of these inserted Wolbachia genes are transcribed within eukaryotic cells lacking endosymbionts. Therefore, heritable lateral gene transfer occurs into eukaryotic hosts from their prokaryote symbionts, potentially providing a mechanism for acquisition of new genes and functions.


Science | 2007

Draft Genome of the Filarial Nematode Parasite Brugia malayi

Elodie Ghedin; Shiliang Wang; David J. Spiro; Elisabet Caler; Qi Zhao; Jonathan Crabtree; Jonathan E. Allen; Arthur L. Delcher; David B. Guiliano; Diego Miranda-Saavedra; Samuel V. Angiuoli; Todd Creasy; Paolo Amedeo; Brian J. Haas; Najib M. El-Sayed; Jennifer R. Wortman; Tamara Feldblyum; Luke J. Tallon; Michael C. Schatz; Martin Shumway; Hean Koo; Seth Schobel; Mihaela Pertea; Mihai Pop; Owen White; Geoffrey J. Barton; Clotilde K. S. Carlow; Michael J. Crawford; Jennifer Daub; Matthew W. Dimmic

Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.


PLOS Biology | 2005

The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode

Jeremy M. Foster; Mehul Ganatra; Ibrahim H. Kamal; Jennifer Ware; Kira S. Makarova; Natalia Ivanova; Anamitra Bhattacharyya; Vinayak Kapatral; Sanjay Kumar; Janos Posfai; Tamas Vincze; Jessica Ingram; Laurie S. Moran; Alla Lapidus; Marina V. Omelchenko; Nikos C. Kyrpides; Elodie Ghedin; Shiliang Wang; Eugene Goltsman; Victor Joukov; Olga Ostrovskaya; Kiryl Tsukerman; Mikhail Mazur; Donald G. Comb; Eugene V. Koonin; Barton E. Slatko

Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachias principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease.


Nature | 2005

Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution

Elodie Ghedin; Naomi Sengamalay; Martin Shumway; Jennifer Zaborsky; Tamara Feldblyum; Vik Subbu; David J. Spiro; Jeff Sitz; Hean Koo; Pavel Bolotov; Dmitry Dernovoy; Tatiana Tatusova; Yīmíng Bào; Kirsten St. George; Jill Taylor; David J. Lipman; Claire M. Fraser; Jeffery K. Taubenberger

Influenza viruses are remarkably adept at surviving in the human population over a long timescale. The human influenza A virus continues to thrive even among populations with widespread access to vaccines, and continues to be a major cause of morbidity and mortality. The virus mutates from year to year, making the existing vaccines ineffective on a regular basis, and requiring that new strains be chosen for a new vaccine. Less-frequent major changes, known as antigenic shift, create new strains against which the human population has little protective immunity, thereby causing worldwide pandemics. The most recent pandemics include the 1918 ‘Spanish’ flu, one of the most deadly outbreaks in recorded history, which killed 30–50 million people worldwide, the 1957 ‘Asian’ flu, and the 1968 ‘Hong Kong’ flu. Motivated by the need for a better understanding of influenza evolution, we have developed flexible protocols that make it possible to apply large-scale sequencing techniques to the highly variable influenza genome. Here we report the results of sequencing 209 complete genomes of the human influenza A virus, encompassing a total of 2,821,103 nucleotides. In addition to increasing markedly the number of publicly available, complete influenza virus genomes, we have discovered several anomalies in these first 209 genomes that demonstrate the dynamic nature of influenza transmission and evolution. This new, large-scale sequencing effort promises to provide a more comprehensive picture of the evolution of influenza viruses and of their pattern of transmission through human and animal populations. All data from this project are being deposited, without delay, in public archives.


PLOS Biology | 2005

Whole-Genome Analysis of Human Influenza A Virus Reveals Multiple Persistent Lineages and Reassortment among Recent H3N2 Viruses

Edward C. Holmes; Elodie Ghedin; Naomi Miller; Jill Taylor; Yiming Bao; Kirsten St. George; Bryan T. Grenfell; Claire M. Fraser; David J. Lipman; Jeffery K. Taubenberger

Understanding the evolution of influenza A viruses in humans is important for surveillance and vaccine strain selection. We performed a phylogenetic analysis of 156 complete genomes of human H3N2 influenza A viruses collected between 1999 and 2004 from New York State, United States, and observed multiple co-circulating clades with different population frequencies. Strikingly, phylogenies inferred for individual gene segments revealed that multiple reassortment events had occurred among these clades, such that one clade of H3N2 viruses present at least since 2000 had provided the hemagglutinin gene for all those H3N2 viruses sampled after the 2002–2003 influenza season. This reassortment event was the likely progenitor of the antigenically variant influenza strains that caused the A/Fujian/411/2002-like epidemic of the 2003–2004 influenza season. However, despite sharing the same hemagglutinin, these phylogenetically distinct lineages of viruses continue to co-circulate in the same population. These data, derived from the first large-scale analysis of H3N2 viruses, convincingly demonstrate that multiple lineages can co-circulate, persist, and reassort in epidemiologically significant ways, and underscore the importance of genomic analyses for future influenza surveillance.


PLOS Pathogens | 2008

The Evolutionary Genetics and Emergence of Avian Influenza Viruses in Wild Birds

Vivien G. Dugan; Rubing Chen; David J. Spiro; Naomi Sengamalay; Jennifer Zaborsky; Elodie Ghedin; Jacqueline M. Nolting; David E. Swayne; Jonathan A. Runstadler; G. M. Happ; Dennis A. Senne; Ruixue Wang; Richard D. Slemons; Edward C. Holmes; Jeffery K. Taubenberger

We surveyed the genetic diversity among avian influenza virus (AIV) in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA) and neuraminidase (NA) subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient “genome constellations,” continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses.


American Journal of Respiratory and Critical Care Medicine | 2013

Comparison of the Respiratory Microbiome in Healthy Nonsmokers and Smokers

Alison Morris; James M. Beck; Patrick D. Schloss; Thomas B. Campbell; Kristina Crothers; Jeffrey L. Curtis; Sonia C. Flores; Andrew P. Fontenot; Elodie Ghedin; Laurence Huang; Kathleen A. Jablonski; Eric C. Kleerup; Susan V. Lynch; Erica Sodergren; Homer L. Twigg; Vincent B. Young; Christine M. Bassis; Arvind Venkataraman; Thomas M. Schmidt; George M. Weinstock

RATIONALE Results from 16S rDNA-encoding gene sequence-based, culture-independent techniques have led to conflicting conclusions about the composition of the lower respiratory tract microbiome. OBJECTIVES To compare the microbiome of the upper and lower respiratory tract in healthy HIV-uninfected nonsmokers and smokers in a multicenter cohort. METHODS Participants were nonsmokers and smokers without significant comorbidities. Oral washes and bronchoscopic alveolar lavages were collected in a standardized manner. Sequence analysis of bacterial 16S rRNA-encoding genes was performed, and the neutral model in community ecology was used to identify bacteria that were the most plausible members of a lung microbiome. MEASUREMENTS AND MAIN RESULTS Sixty-four participants were enrolled. Most bacteria identified in the lung were also in the mouth, but specific bacteria such as Enterobacteriaceae, Haemophilus, Methylobacterium, and Ralstonia species were disproportionally represented in the lungs compared with values predicted by the neutral model. Tropheryma was also in the lung, but not the mouth. Mouth communities differed between nonsmokers and smokers in species such as Porphyromonas, Neisseria, and Gemella, but lung bacterial populations did not. CONCLUSIONS This study is the largest to examine composition of the lower respiratory tract microbiome in healthy individuals and the first to use the neutral model to compare the lung to the mouth. Specific bacteria appear in significantly higher abundance in the lungs than would be expected if they originated from the mouth, demonstrating that the lung microbiome does not derive entirely from the mouth. The mouth microbiome differs in nonsmokers and smokers, but lung communities were not significantly altered by smoking.


Archives of Virology | 2016

Taxonomy of the order Mononegavirales: update 2016

Claudio L. Afonso; Gaya K. Amarasinghe; Krisztián Bányai; Yīmíng Bào; Christopher F. Basler; Sina Bavari; Nicolás Bejerman; Kim R. Blasdell; François Xavier Briand; Thomas Briese; Alexander Bukreyev; Charles H. Calisher; Kartik Chandran; Jiāsēn Chéng; Anna N. Clawson; Peter L. Collins; Ralf G. Dietzgen; Olga Dolnik; Leslie L. Domier; Ralf Dürrwald; John M. Dye; Andrew J. Easton; Hideki Ebihara; Szilvia L. Farkas; Juliana Freitas-Astúa; Pierre Formenty; Ron A. M. Fouchier; Yànpíng Fù; Elodie Ghedin; Michael M. Goodin

In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


BMC Genomics | 2008

Viral genome sequencing by random priming methods

Appolinaire Djikeng; Rebecca A. Halpin; Ryan Kuzmickas; Jay V. DePasse; Jeremy I. Feldblyum; Naomi Sengamalay; Claudio L. Afonso; Xinsheng Zhang; Norman G Anderson; Elodie Ghedin; David J. Spiro

BackgroundMost emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are RNA viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is a better understanding of global viral diversity to enable better surveillance and prediction of pandemic threats; this will require rapid and flexible methods for complete viral genome sequencing.ResultsWe have adapted the SISPA methodology [1–3] to genome sequencing of RNA and DNA viruses. We have demonstrated the utility of the method on various types and sources of viruses, obtaining near complete genome sequence of viruses ranging in size from 3,000–15,000 kb with a median depth of coverage of 14.33. We used this technique to generate full viral genome sequence in the presence of host contaminants, using viral preparations from cell culture supernatant, allantoic fluid and fecal matter.ConclusionThe method described is of great utility in generating whole genome assemblies for viruses with little or no available sequence information, viruses from greatly divergent families, previously uncharacterized viruses, or to more fully describe mixed viral infections.

Collaboration


Dive into the Elodie Ghedin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Spiro

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Adam Fitch

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay V. DePasse

Pittsburgh Supercomputing Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison Morris

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas R. Unnasch

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

David E. Wentworth

National Center for Immunization and Respiratory Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge