Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Wong is active.

Publication


Featured researches published by David J. Wong.


Nature | 2010

Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis

Rajnish A. Gupta; Nilay R. Shah; Kevin C. Wang; Jeewon Kim; Hugo M. Horlings; David J. Wong; Miao-Chih Tsai; Tiffany Hung; Pedram Argani; John L. Rinn; Yulei Wang; Pius M. Brzoska; Benjamin Kong; Rui-Chun Li; Robert B. West; Marc J. van de Vijver; Saraswati Sukumar; Howard Y. Chang

Large intervening non-coding RNAs (lincRNAs) are pervasively transcribed in the genome yet their potential involvement in human disease is not well understood. Recent studies of dosage compensation, imprinting, and homeotic gene expression suggest that individual lincRNAs can function as the interface between DNA and specific chromatin remodelling activities. Here we show that lincRNAs in the HOX loci become systematically dysregulated during breast cancer progression. The lincRNA termed HOTAIR is increased in expression in primary breast tumours and metastases, and HOTAIR expression level in primary tumours is a powerful predictor of eventual metastasis and death. Enforced expression of HOTAIR in epithelial cancer cells induced genome-wide re-targeting of Polycomb repressive complex 2 (PRC2) to an occupancy pattern more resembling embryonic fibroblasts, leading to altered histone H3 lysine 27 methylation, gene expression, and increased cancer invasiveness and metastasis in a manner dependent on PRC2. Conversely, loss of HOTAIR can inhibit cancer invasiveness, particularly in cells that possess excessive PRC2 activity. These findings indicate that lincRNAs have active roles in modulating the cancer epigenome and may be important targets for cancer diagnosis and therapy.


Nature Genetics | 2011

Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters

Tiffany Hung; Yulei Wang; Michael F. Lin; Ashley K. Koegel; Yojiro Kotake; Gavin D. Grant; Hugo M. Horlings; Nilay Shah; Christopher B. Umbricht; Pei Wang; Yu Wang; Benjamin Kong; Anita Langerød; Anne Lise Børresen-Dale; Seung K. Kim; Marc J. van de Vijver; Saraswati Sukumar; Michael L. Whitfield; Manolis Kellis; Yue Xiong; David J. Wong; Howard Y. Chang

Transcription of long noncoding RNAs (lncRNAs) within gene regulatory elements can modulate gene activity in response to external stimuli, but the scope and functions of such activity are not known. Here we use an ultrahigh-density array that tiles the promoters of 56 cell-cycle genes to interrogate 108 samples representing diverse perturbations. We identify 216 transcribed regions that encode putative lncRNAs, many with RT-PCR–validated periodic expression during the cell cycle, show altered expression in human cancers and are regulated in expression by specific oncogenic stimuli, stem cell differentiation or DNA damage. DNA damage induces five lncRNAs from the CDKN1A promoter, and one such lncRNA, named PANDA, is induced in a p53-dependent manner. PANDA interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin. These findings suggest potentially widespread roles for promoter lncRNAs in cell-growth control.


Cell Stem Cell | 2008

Module Map of Stem Cell Genes Guides Creation of Epithelial Cancer Stem Cells

David J. Wong; Helen Liu; Todd W. Ridky; David S. Cassarino; Eran Segal; Howard Y. Chang

Self-renewal is a hallmark of stem cells and cancer, but existence of a shared stemness program remains controversial. Here, we construct a gene module map to systematically relate transcriptional programs in embryonic stem cells (ESCs), adult tissue stem cells, and human cancers. This map reveals two predominant gene modules that distinguish ESCs and adult tissue stem cells. The ESC-like transcriptional program is activated in diverse human epithelial cancers and strongly predicts metastasis and death. c-Myc, but not other oncogenes, is sufficient to reactivate the ESC-like program in normal and cancer cells. In primary human keratinocytes transformed by Ras and I kappa B alpha, c-Myc increases the fraction of tumor-initiating cells by 150-fold, enabling tumor formation and serial propagation with as few as 500 cells. c-Myc-enhanced tumor initiation is cell-autonomous and independent of genomic instability. Thus, activation of an ESC-like transcriptional program in differentiated adult cells may induce pathologic self-renewal characteristic of cancer stem cells.


Nature Genetics | 1999

Evolution of neoplastic cell lineages in Barrett oesophagus

Michael T. Barrett; Carissa A. Sanchez; Laura J. Prevo; David J. Wong; Patricia C. Galipeau; Thomas G. Paulson; Peter S. Rabinovitch; Brian J. Reid

It has been hypothesized that neoplastic progression develops as a consequence of an acquired genetic instability and the subsequent evolution of clonal populations with accumulated genetic errors. Accordingly, human cancers and some premalignant lesions contain multiple genetic abnormalities not present in the normal tissues from which the neoplasms arose. Barrett oesophagus (BE) is a premalignant condition which predisposes to oesophageal adenocarcinoma (EA) that can be biopsied prospectively over time because endoscopic surveillance is recommended for early detection of cancer. In addition, oesophagectomy specimens frequently contain the premalignant epithelium from which the cancer arose. Neoplastic progression in BE is associated with alterations in TP53 (also known as p53) and CDKN2A (also known as p16) and non-random losses of heterozygosity (LOH). Aneuploid or increased 4N populations occur in more than 90-95% of EAs, arise in premalignant epithelium and predict progression. We have previously shown in small numbers of patients that disruption of TP53 and CDKN2A typically occurs before aneuploidy and cancer. Here, we determine the evolutionary relationships of non-random LOH, TP53 and CDKN2A mutations, CDKN2A CpG-island methylation and ploidy during neoplastic progression. Diploid cell progenitors with somatic genetic or epigenetic abnormalities in TP53 and CDKN2A were capable of clonal expansion, spreading to large regions of oesophageal mucosa. The subsequent evolution of neoplastic progeny frequently involved bifurcations and LOH at 5q, 13q and 18q that occurred in no obligate order relative to each other, DNA-content aneuploidy or cancer. Our results indicate that clonal evolution is more complex than predicted by linear models.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells

Keith Syson Chan; Inigo Espinosa; Mark P. Chao; David J. Wong; Laurie E. Ailles; Max Diehn; Harcharan Gill; Joseph C. Presti; Howard Y. Chang; Matt van de Rijn; Linda D. Shortliffe; Irving L. Weissman

Major clinical issues in bladder cancer include the identification of prediction markers and novel therapeutic targets for invasive bladder cancer. In the current study, we describe the isolation and characterization of a tumor-initiating cell (T-IC) subpopulation in primary human bladder cancer, based on the expression of markers similar to that of normal bladder basal cells (Lineage-CD44+CK5+CK20−). The bladder T-IC subpopulation was defined functionally by its enriched ability to induce xenograft tumors in vivo that recapitulated the heterogeneity of the original tumor. Further, molecular analysis of more than 300 bladder cancer specimens revealed heterogeneity among activated oncogenic pathways in T-IC (e.g., 80% Gli1, 45% Stat3, 10% Bmi-1, and 5% β-catenin). Despite this molecular heterogeneity, we identified a unique bladder T-IC gene signature by gene chip analysis. This T-IC gene signature, which effectively distinguishes muscle-invasive bladder cancer with worse clinical prognosis from non-muscle-invasive (superficial) cancer, has significant clinical value. It also can predict the progression of a subset of recurring non-muscle-invasive cancers. Finally, we found that CD47, a protein that provides an inhibitory signal for macrophage phagocytosis, is highly expressed in bladder T-ICs compared with the rest of the tumor. Blockade of CD47 by a mAb resulted in macrophage engulfment of bladder cancer cells in vitro. In summary, we have identified a T-IC subpopulation with potential prognostic and therapeutic value for invasive bladder cancer.


Science | 2008

Deletional Tolerance Mediated by Extrathymic Aire-Expressing Cells

James M. Gardner; Jason DeVoss; Rachel S. Friedman; David J. Wong; Ying X. Tan; Xuyu Zhou; Kellsey Johannes; Maureen A. Su; Howard Y. Chang; Matthew F. Krummel; Mark S. Anderson

The prevention of autoimmunity requires the elimination of self-reactive T cells during their development and maturation. The expression of diverse self-antigens by stromal cells in the thymus is essential to this process and depends, in part, on the activity of the autoimmune regulator (Aire) gene. Here we report the identification of extrathymic Aire-expressing cells (eTACs) resident within the secondary lymphoid organs. These stromally derived eTACs express a diverse array of distinct self-antigens and are capable of interacting with and deleting naïve autoreactive T cells. Using two-photon microscopy, we observed stable antigen-specific interactions between eTACs and autoreactive T cells. We propose that such a secondary network of self-antigen–expressing stromal cells may help reinforce immune tolerance by preventing the maturation of autoreactive T cells that escape thymic negative selection.


Molecular and Cellular Biology | 1998

Inactivation of p16 in Human Mammary Epithelial Cells by CpG Island Methylation

Scott A. Foster; David J. Wong; Michael T. Barrett; Denise A. Galloway

ABSTRACT Proliferation of human mammary epithelial cells (HMEC) is limited to a few passages in culture due to an arrest in G1 termed selection or mortality stage 0, M0. A small number of cells spontaneously escape M0, continue to proliferate in culture, and then enter a second mortality stage, M1, at which they senesce. Evidence that M0 involves the Rb pathway comes from the observation that expression of human papillomavirus type 16 E7 alleviates the M0 proliferation block, and we further show that the Rb-binding region of E7 is required to allow cells to bypass M0. In contrast, E6 does not prevent HMEC from entering M0 but, rather, is involved in M1 bypass. Here we show that inactivation of the D-type cyclin-dependent kinase inhibitor p16INK4A is associated with escape from the M0 proliferation block. Early-passage HMEC express readily detectable amounts of p16 protein, whereas normal or E6-expressing HMEC that escaped M0 expressed markedly reduced amounts of p16 mRNA and protein. This initial reduction of p16 expression was associated with limited methylation of the p16 promoter region CpG island. At later passages, a further reduction in p16 expression occurred, accompanied by increased CpG island methylation. In contrast, reduction of p16 expression did not occur in E7-expressing HMEC that bypassed M0, due to inactivation of Rb. These observations in the E6-expressing HMEC correlate well with the finding that CpG island methylation is a mechanism of p16 inactivation in the development of human tumors, including breast cancer.


Nature Medicine | 2010

Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia

Todd W. Ridky; Jennifer M Chow; David J. Wong; Paul A. Khavari

Refined cancer models are required if researchers are to assess the burgeoning number of potential targets for cancer therapeutics in a clinically relevant context that allows a fast turnaround. Here we use tumor-associated genetic pathways to transform primary human epithelial cells from the epidermis, oropharynx, esophagus and cervix into genetically defined tumors in a human three-dimensional (3D) tissue environment that incorporates cell-populated stroma and intact basement membrane. These engineered organotypic tissues recapitulated natural features of tumor progression, including epithelial invasion through basement membrane, a complex process that is necessary for biological malignancy in 90% of human cancers. Invasion was rapid and was potentiated by stromal cells. Oncogenic signals in 3D tissue, but not 2D culture, resembled gene expression profiles from spontaneous human cancers. We screened 3D organotypic neoplasia with well-characterized signaling pathway inhibitors to distill a clinically faithful cancer gene signature. Multitissue 3D human tissue cancer models may provide an efficient and relevant complement to current approaches to characterizing cancer progression.


Molecular and Cellular Biology | 1999

Progressive Region-Specific De Novo Methylation of the p16 CpG Island in Primary Human Mammary Epithelial Cell Strains during Escape from M 0 Growth Arrest

David J. Wong; Scott A. Foster; Denise A. Galloway; Brian J. Reid

ABSTRACT CpG island methylation plays an important role in normal cellular processes, such as genomic imprinting and X-chromosome inactivation, as well as in abnormal processes, such as neoplasia. However, the dynamics of de novo CpG island methylation, during which a CpG island is converted from an unmethylated, active state to a densely methylated, inactive state, are largely unknown. It is unclear whether the development of de novo CpG island methylation is a progressive process, in which a subset of CpG sites are initially methylated with a subsequent increase in methylation density, or a single event, in which the initial methylation event encompasses the entire CpG island. The tumor suppressor gene p16/CDKN2a/INK4a (p16) is inactivated by CpG island methylation during neoplastic progression in a variety of human cancers. We investigated the development of methylation in the p16 CpG island in primary human mammary epithelial cell strains during escape from mortality stage 0 (M0) growth arrest. The methylation status of 47 CpG sites in the p16 CpG island on individual DNA molecules was determined by sequencing PCR clones of bisulfite-treated genomic DNA. The p16 CpG island was initially methylated at a subset of sites in three discrete regions in association with p16 transcriptional repression and escape from M0 growth arrest. With continued passage, methylation gradually increased in density and methylation expanded to sites in adjacent regions. Thus, de novo methylation in the p16 CpG island is a progressive process that is neither site specific nor completely random but instead is region specific. Our results suggest that early detection of methylation in the CpG island of the p16 gene will require methylation analysis of the three regions and that the identification of region-specific methylation patterns in other genes may be essential for an accurate assessment of methylation-mediated transcriptional silencing.


Journal of Cutaneous Pathology | 1998

p16INK4a expression is frequently decreased and associated with 9p21 loss of heterozygosity in sporadic melanoma

Jens Oliver Funk; Peter I. Schiller; Michael T. Barrett; David J. Wong; Peter Kind; Christian A. Sander

The product of the p16/INK4a/CDKN2/MTS1 tumor‐suppressor gene acts as a negative cell cycle regulator by inhibiting G1 cyclin‐dependent kinases that phosphorylate the retinoblastoma protein. p16 is inactivated in a wide range of human malignancies, including familial melanoma. However, its expression and function in sporadic melanoma has not been extensively investigated. We studied p16 expression in 62 archival melanomas and 30 archival nevi and lentigines by immunohistochemistry. Eighteen of 26 (69%) superficial spreading melanomas, 17 of 28 (61%) nodular melanomas, all of three lentigo maligna melanomas, and all of five melanoma metastases were found to harbor less than 10%p16‐positive tumor cells. In contrast, only six of 24 (25%) nevi had less than 10% positive cells. No correlation between tumor thickness and loss of p16 expression was found. Using DNA from micro‐dissected tumor and matched normal tissues, five of seven (71%) p16‐negative melanoma cases had 9p21 loss of heterozygosity (LOH), and one of these 9p21 LOH cases had promoter region hypermethylation of the remaining p16 allele. These data demonstrate that partial or complete loss of p16 expression is prevalent in sporadic melanoma and is frequently associated with 9p21 LOH.

Collaboration


Dive into the David J. Wong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian J. Reid

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Michael T. Barrett

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia C. Galipeau

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eran Segal

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge