Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiffany Hung is active.

Publication


Featured researches published by Tiffany Hung.


Nature | 2010

Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis

Rajnish A. Gupta; Nilay R. Shah; Kevin C. Wang; Jeewon Kim; Hugo M. Horlings; David J. Wong; Miao-Chih Tsai; Tiffany Hung; Pedram Argani; John L. Rinn; Yulei Wang; Pius M. Brzoska; Benjamin Kong; Rui-Chun Li; Robert B. West; Marc J. van de Vijver; Saraswati Sukumar; Howard Y. Chang

Large intervening non-coding RNAs (lincRNAs) are pervasively transcribed in the genome yet their potential involvement in human disease is not well understood. Recent studies of dosage compensation, imprinting, and homeotic gene expression suggest that individual lincRNAs can function as the interface between DNA and specific chromatin remodelling activities. Here we show that lincRNAs in the HOX loci become systematically dysregulated during breast cancer progression. The lincRNA termed HOTAIR is increased in expression in primary breast tumours and metastases, and HOTAIR expression level in primary tumours is a powerful predictor of eventual metastasis and death. Enforced expression of HOTAIR in epithelial cancer cells induced genome-wide re-targeting of Polycomb repressive complex 2 (PRC2) to an occupancy pattern more resembling embryonic fibroblasts, leading to altered histone H3 lysine 27 methylation, gene expression, and increased cancer invasiveness and metastasis in a manner dependent on PRC2. Conversely, loss of HOTAIR can inhibit cancer invasiveness, particularly in cells that possess excessive PRC2 activity. These findings indicate that lincRNAs have active roles in modulating the cancer epigenome and may be important targets for cancer diagnosis and therapy.


Nature | 2006

ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression

Xiaobing Shi; Tao Hong; Kay L. Walter; Mark Ewalt; Eriko Michishita; Tiffany Hung; Dylan Carney; Pedro V. Peña; Fei Lan; Mohan R. Kaadige; Nicolas Lacoste; Christelle Cayrou; Foteini Davrazou; Anjanabha Saha; Bradley R. Cairns; Donald E. Ayer; Tatiana G. Kutateladze; Yang Shi; Jacques Côté; Katrin F. Chua; Or Gozani

Dynamic regulation of diverse nuclear processes is intimately linked to covalent modifications of chromatin. Much attention has focused on methylation at lysine 4 of histone H3 (H3K4), owing to its association with euchromatic genomic regions. H3K4 can be mono-, di- or tri-methylated. Trimethylated H3K4 (H3K4me3) is preferentially detected at active genes, and is proposed to promote gene expression through recognition by transcription-activating effector molecules. Here we identify a novel class of methylated H3K4 effector domains—the PHD domains of the ING (for inhibitor of growth) family of tumour suppressor proteins. The ING PHD domains are specific and highly robust binding modules for H3K4me3 and H3K4me2. ING2, a native subunit of a repressive mSin3a–HDAC1 histone deacetylase complex, binds with high affinity to the trimethylated species. In response to DNA damage, recognition of H3K4me3 by the ING2 PHD domain stabilizes the mSin3a–HDAC1 complex at the promoters of proliferation genes. This pathway constitutes a new mechanism by which H3K4me3 functions in active gene repression. Furthermore, ING2 modulates cellular responses to genotoxic insults, and these functions are critically dependent on ING2 interaction with H3K4me3. Together, our findings establish a pivotal role for trimethylation of H3K4 in gene repression and, potentially, tumour suppressor mechanisms.


Nature Genetics | 2011

Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters

Tiffany Hung; Yulei Wang; Michael F. Lin; Ashley K. Koegel; Yojiro Kotake; Gavin D. Grant; Hugo M. Horlings; Nilay Shah; Christopher B. Umbricht; Pei Wang; Yu Wang; Benjamin Kong; Anita Langerød; Anne Lise Børresen-Dale; Seung K. Kim; Marc J. van de Vijver; Saraswati Sukumar; Michael L. Whitfield; Manolis Kellis; Yue Xiong; David J. Wong; Howard Y. Chang

Transcription of long noncoding RNAs (lncRNAs) within gene regulatory elements can modulate gene activity in response to external stimuli, but the scope and functions of such activity are not known. Here we use an ultrahigh-density array that tiles the promoters of 56 cell-cycle genes to interrogate 108 samples representing diverse perturbations. We identify 216 transcribed regions that encode putative lncRNAs, many with RT-PCR–validated periodic expression during the cell cycle, show altered expression in human cancers and are regulated in expression by specific oncogenic stimuli, stem cell differentiation or DNA damage. DNA damage induces five lncRNAs from the CDKN1A promoter, and one such lncRNA, named PANDA, is induced in a p53-dependent manner. PANDA interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin. These findings suggest potentially widespread roles for promoter lncRNAs in cell-growth control.


RNA Biology | 2010

Long noncoding RNA in genome regulation: Prospects and mechanisms

Tiffany Hung; Howard Y. Chang

Long noncoding RNAs (lncRNAs) are pervasively transcribed and critical regulators of the epigenome[1, 2]. These long, polyadenylated RNAs do not code for proteins, but function directly as RNAs, recruiting chromatin modifiers to mediate transcriptional changes in processes ranging from X-inactivation (XIST) to imprinting (H19)[3]. The recent discovery that lncRNA HOTAIR can link chromatin changes to cancer metastasis[4] furthers the relevance of lncRNAs to human disease. Here, we discuss lncRNAs as regulatory modules and explore the implications for disease pathogenesis. Although large-scale analyses of mammalian transcriptomes have revealed that more than 50% of transcripts have no protein coding potential[2, 5, 6], the functions of these putative transcripts are largely unknown. A subset of these noncoding transcripts are termed long noncoding RNAs (lncRNAs), based on an arbitrary minimum length of 200 nucleotides. LncRNAs are roughly classified based on their position relative to protein-coding genes: intergenic (between genes), intragenic/intronic (within genes), and antisense[2]. Initial efforts to characterize these molecules demonstrated that they function in cis, regulating their immediate genomic neighbors. Examples include AIR, XIST, and Kcnq1ot (reviewed in [1, 7, 8]), which recruit chromatin modifying complexes to silence adjacent sites. The scope of lncRNAs in gene regulation was advanced with the finding that lncRNA HOTAIR exhibited trans regulatory capacities. HOTAIR is transcribed at the intersection of opposing chromatin domains in the HOXC locus, but targets Polycomb Repressive Complex 2 (PRC2) to silence 40 kilobases of HOXD[9], a locus involved in developmental patterning. A subsequent study revealed that HOTAIR is overexpressed in approximately one quarter of human breast cancers, directing PRC2 to approximately 800 ectopic sites in the genome, which leads to histone H3 lysine 27 trimethylation and changes in gene expression[4]. The impacts of lncRNA-mediated chromatin changes are noteworthy: not only did HOTAIR drive metastasis in a mouse model, but HOTAIR expression in human breast cancer was found to be an independent prognostic marker for death and metastasis[4]. The fact that HOTAIR drives chromatin reprogramming genome-wide suggests that long-range regulation by lncRNAs may be a widespread mechanism. This is supported by a study showing that >20% of tested lncRNAs are bound by PRC2 and other chromatin modifiers[10]. Furthermore, this is an underestimate of the total RNAs involved in chromatin modification, as PRC2 target genes also transcribe smaller 50-200 nt RNAs that interact with SUZ12 to mediate gene repression[11]. These findings provoke questions regarding the initial triggers for HOTAIR overexpression and whether understanding of lncRNA mechanics may have clinical relevance.


Molecular Cell | 2009

ING4 Mediates Crosstalk between Histone H3 K4 Trimethylation and H3 Acetylation to Attenuate Cellular Transformation

Tiffany Hung; Olivier Binda; Karen S. Champagne; Alex J. Kuo; Kyle L. Johnson; Howard Y. Chang; Matthew D. Simon; Tatiana G. Kutateladze; Or Gozani

Aberrations in chromatin dynamics play a fundamental role in tumorigenesis, yet relatively little is known of the molecular mechanisms linking histone lysine methylation to neoplastic disease. ING4 (Inhibitor of Growth 4) is a native subunit of an HBO1 histone acetyltransferase (HAT) complex and a tumor suppressor protein. Here we show a critical role for specific recognition of histone H3 trimethylated at lysine 4 (H3K4me3) by the ING4 PHD finger in mediating ING4 gene expression and tumor suppressor functions. The interaction between ING4 and H3K4me3 augments HBO1 acetylation activity on H3 tails and drives H3 acetylation at ING4 target promoters. Further, ING4 facilitates apoptosis in response to genotoxic stress and inhibits anchorage-independent cell growth, and these functions depend on ING4 interactions with H3K4me3. Together, our results demonstrate a mechanism for brokering crosstalk between H3K4 methylation and H3 acetylation and reveal a molecular link between chromatin modulation and tumor suppressor mechanisms.


Molecular Cell | 2009

HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail.

Nehmé Saksouk; Nikita Avvakumov; Karen S. Champagne; Tiffany Hung; Yannick Doyon; Christelle Cayrou; Eric Paquet; Mukta Ullah; Anne-Julie Landry; Valérie Côté; Xiang-Jiao Yang; Or Gozani; Tatiana G. Kutateladze; Jacques Côté

The HBO1 HAT protein is the major source of histone H4 acetylation in vivo and has been shown to play critical roles in gene regulation and DNA replication. A distinctive characteristic of HBO1 HAT complexes is the presence of three PHD finger domains in two different subunits: tumor suppressor proteins ING4/5 and JADE1/2/3. Biochemical and functional analyses indicate that these domains interact with histone H3 N-terminal tail region, but with a different specificity toward its methylation status. Their combinatorial action is essential in regulating chromatin binding and substrate specificity of HBO1 complexes, as well as cell growth. Importantly, localization analyses on the human genome indicate that HBO1 complexes are enriched throughout the coding regions of genes, supporting a role in transcription elongation. These results underline the importance and versatility of PHD finger domains in regulating chromatin association and histone modification crosstalk within a single protein complex.


Journal of Molecular Biology | 2008

Histone H3K4me3 Binding Is Required for the DNA Repair and Apoptotic Activities of ING1 Tumor Suppressor

P.V. Peña; R.A. Hom; Tiffany Hung; H. Lin; Alex J. Kuo; R.P.C. Wong; Oksana M. Subach; K.S. Champagne; Rui Zhao; Vladislav V. Verkhusha; G. Li; Or Gozani; Tatiana G. Kutateladze

Inhibitor of growth 1 (ING1) is implicated in oncogenesis, DNA damage repair, and apoptosis. Mutations within the ING1 gene and altered expression levels of ING1 are found in multiple human cancers. Here, we show that both DNA repair and apoptotic activities of ING1 require the interaction of the C-terminal plant homeodomain (PHD) finger with histone H3 trimethylated at Lys4 (H3K4me3). The ING1 PHD finger recognizes methylated H3K4 but not other histone modifications as revealed by the peptide microarrays. The molecular mechanism of the histone recognition is elucidated based on a 2.1 A-resolution crystal structure of the PHD-H3K4me3 complex. The K4me3 occupies a deep hydrophobic pocket formed by the conserved Y212 and W235 residues that make cation-pi contacts with the trimethylammonium group. Both aromatic residues are essential in the H3K4me3 recognition, as substitution of these residues with Ala disrupts the interaction. Unlike the wild-type ING1, the W235A mutant, overexpressed in the stable clones of melanoma cells or in HT1080 cells, was unable to stimulate DNA repair after UV irradiation or promote DNA-damage-induced apoptosis, indicating that H3K4me3 binding is necessary for these biological functions of ING1. Furthermore, N216S, V218I, and G221V mutations, found in human malignancies, impair the ability of ING1 to associate with H3K4me3 or to induce nucleotide repair and cell death, linking the tumorigenic activity of ING1 with epigenetic regulation. Together, our findings reveal the critical role of the H3K4me3 interaction in mediating cellular responses to genotoxic stresses and offer new insight into the molecular mechanism underlying the tumor suppressive activity of ING1.


Nature Genetics | 2016

An inducible long noncoding RNA amplifies DNA damage signaling.

Adam M. Schmitt; Julia T. Garcia; Tiffany Hung; Ryan A. Flynn; Kun Qu; Alexander Y. Payumo; Ashwin Peres-da-Silva; Daniela Kenzelmann Broz; Rachel Baum; Shuling Guo; James K. Chen; Laura D. Attardi; Howard Y. Chang

Long noncoding RNAs (lncRNAs) are prevalent genes with frequently precise regulation but mostly unknown functions. Here we demonstrate that lncRNAs guide the organismal DNA damage response. DNA damage activated transcription of the DINO (Damage Induced Noncoding) lncRNA via p53. DINO was required for p53-dependent gene expression, cell cycle arrest and apoptosis in response to DNA damage, and DINO expression was sufficient to activate damage signaling and cell cycle arrest in the absence of DNA damage. DINO bound to p53 protein and promoted its stabilization, mediating a p53 auto-amplification loop. Dino knockout or promoter inactivation in mice dampened p53 signaling and ameliorated acute radiation syndrome in vivo. Thus, inducible lncRNA can create a feedback loop with its cognate transcription factor to amplify cellular signaling networks.


Archive | 2012

Diagnostic, prognostic and therapeutic uses of long non-coding rnas for cancer and regenerative medicine

Howard Y. Chang; David J. Wong; Tiffany Hung


International Journal of Radiation Oncology Biology Physics | 2013

Regulation of the DNA Damage Response by an Inducible Long Noncoding RNA

Adam M. Schmitt; Tiffany Hung; Ryan A. Flynn; Alexander Y. Payumo; A. Peres-da-Silva; D. Kenzelmann Broz; Laura D. Attardi; James K. Chen; Howard Y. Chang

Collaboration


Dive into the Tiffany Hung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen S. Champagne

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro V. Peña

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugo M. Horlings

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge