David Johnson
John Radcliffe Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Johnson.
Journal of Experimental Medicine | 2013
Maryam Salimi; Jillian L. Barlow; Sean P. Saunders; Luzheng Xue; Danuta Gutowska-Owsiak; Xinwen Wang; Li-Chieh Huang; David Johnson; Seth T. Scanlon; Andrew N. J. McKenzie; Padraic G. Fallon; Graham S. Ogg
Type 2 innate lymphoid cells promote skin inflammation in mice and men, in part by producing IL-5 and IL-13 in response to IL-33
American Journal of Human Genetics | 1999
Michael Oldridge; Elaine H. Zackai; Donna M. McDonald-McGinn; Sachiko Iseki; Gillian M. Morriss-Kay; Stephen R.F. Twigg; David Johnson; Steven A. Wall; Wen Jiang; Christiane Theda; Ethylin Wang Jabs; Andrew O.M. Wilkie
Apert syndrome, one of five craniosynostosis syndromes caused by allelic mutations of fibroblast growth-factor receptor 2 (FGFR2), is characterized by symmetrical bony syndactyly of the hands and feet. We have analyzed 260 unrelated patients, all but 2 of whom have missense mutations in exon 7, which affect a dipeptide in the linker region between the second and third immunoglobulin-like domains. Hence, the molecular mechanism of Apert syndrome is exquisitely specific. FGFR2 mutations in the remaining two patients are distinct in position and nature. Surprisingly, each patient harbors an Alu-element insertion of approximately 360 bp, in one case just upstream of exon 9 and in the other case within exon 9 itself. The insertions are likely to be pathological, because they have arisen de novo; in both cases this occurred on the paternal chromosome. FGFR2 is present in alternatively spliced isoforms characterized by either the IIIb (exon 8) or IIIc (exon 9) domains (keratinocyte growth-factor receptor [KGFR] and bacterially expressed kinase, respectively), which are differentially expressed in mouse limbs on embryonic day 13. Splicing of exon 9 was examined in RNA extracted from fibroblasts and keratinocytes from one patient with an Alu insertion and two patients with Pfeiffer syndrome who had nucleotide substitutions of the exon 9 acceptor splice site. Ectopic expression of KGFR in the fibroblast lines correlated with the severity of limb abnormalities. This provides the first genetic evidence that signaling through KGFR causes syndactyly in Apert syndrome.
American Journal of Human Genetics | 2002
Shih-hsin Kan; Navaratnam Elanko; David Johnson; Laura R. Cornejo-Roldan; Jackie Cook; Elsa Reich; Susan Tomkins; Alain Verloes; Stephen R.F. Twigg; Sahan V. Rannan-Eliya; Donna M. McDonald-McGinn; Elaine H. Zackai; Steven A. Wall; Maximilian Muenke; Andrew O.M. Wilkie
It has been known for several years that heterozygous mutations of three members of the fibroblast growth-factor-receptor family of signal-transduction molecules-namely, FGFR1, FGFR2, and FGFR3-contribute significantly to disorders of bone patterning and growth. FGFR3 mutations, which predominantly cause short-limbed bone dysplasia, occur in all three major regions (i.e., extracellular, transmembrane, and intracellular) of the protein. By contrast, most mutations described in FGFR2 localize to just two exons (IIIa and IIIc), encoding the IgIII domain in the extracellular region, resulting in syndromic craniosynostosis including Apert, Crouzon, or Pfeiffer syndromes. Interpretation of this apparent clustering of mutations in FGFR2 has been hampered by the absence of any complete FGFR2-mutation screen. We have now undertaken such a screen in 259 patients with craniosynostosis in whom mutations in other genes (e.g., FGFR1, FGFR3, and TWIST) had been excluded; part of this screen was a cohort-based study, enabling unbiased estimates of the mutation distribution to be obtained. Although the majority (61/62 in the cohort sample) of FGFR2 mutations localized to the IIIa and IIIc exons, we identified mutations in seven additional exons-including six distinct mutations of the tyrosine kinase region and a single mutation of the IgII domain. The majority of patients with atypical mutations had diagnoses of Pfeiffer syndrome or Crouzon syndrome. Overall, FGFR2 mutations were present in 9.8% of patients with craniosynostosis who were included in a prospectively ascertained sample, but no mutations were found in association with isolated fusion of the metopic or sagittal sutures. We conclude that the spectrum of FGFR2 mutations causing craniosynostosis is wider than previously recognized but that, nevertheless, the IgIIIa/IIIc region represents a genuine mutation hotspot.
American Journal of Human Genetics | 1998
David Johnson; Sharon W. Horsley; Dominique M. Moloney; Michael Oldridge; Stephen R.F. Twigg; Sinead Walsh; Margaret Barrow; Pål R. Njølstad; Jürgen Kunz; Geraldine J. Ashworth; Steven A. Wall; Lyndal Kearney; Andrew O.M. Wilkie
Mutations in the coding region of the TWIST gene (encoding a basic helix-loop-helix transcription factor) have been identified in some cases of Saethre-Chotzen syndrome. Haploinsufficiency appears to be the pathogenic mechanism involved. To investigate the possibility that complete deletions of the TWIST gene also contribute to this disorder, we have developed a comprehensive strategy to screen for coding-region mutations and for complete gene deletions. Heterozygous TWIST mutations were identified in 8 of 10 patients with Saethre-Chotzen syndrome and in 2 of 43 craniosynostosis patients with no clear diagnosis. In addition to six coding-region mutations, our strategy revealed four complete TWIST deletions, only one of which associated with a translocation was suspected on the basis of conventional cytogenetic analysis. This case and two interstitial deletions were detectable by analysis of polymorphic microsatellite loci, including a novel (CA)n locus 7.9 kb away from TWIST, combined with FISH; these deletions ranged in size from 3.5 Mb to >11.6 Mb. The remaining, much smaller deletion was detected by Southern blot analysis and removed 2,924 bp, with a 2-bp orphan sequence at the breakpoint. Significant learning difficulties were present in the three patients with megabase-sized deletions, which suggests that haploinsufficiency of genes neighboring TWIST contributes to developmental delay. Our results identify a new microdeletion disorder that maps to chromosome band 7p21.1 and that causes a significant proportion of Saethre-Chotzen syndrome.
American Journal of Human Genetics | 2000
Rivka L. Glaser; Wen Jiang; Simeon A. Boyadjiev; Alissa K. Tran; Andrea A. Zachary; Lionel Van Maldergem; David Johnson; Sinead Walsh; Michael Oldridge; Steven A. Wall; Andrew O.M. Wilkie; Ethylin Wang Jabs
Crouzon syndrome and Pfeiffer syndrome are both autosomal dominant craniosynostotic disorders that can be caused by mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. To determine the parental origin of these FGFR2 mutations, the amplification refractory mutation system (ARMS) was used. ARMS PCR primers were developed to recognize polymorphisms that could distinguish maternal and paternal alleles. A total of 4,374 bases between introns IIIa and 11 of the FGFR2 gene were sequenced and were assayed by heteroduplex analysis, to identify polymorphisms. Two polymorphisms (1333TA/TATA and 2710 C/T) were found and were used with two previously described polymorphisms, to screen a total of 41 families. Twenty-two of these families were shown to be informative (11 for Crouzon syndrome and 11 for Pfeiffer syndrome). Eleven different mutations in the 22 families were detected by either restriction digest or allele-specific oligonucleotide hybridization of ARMS PCR products. We molecularly proved the origin of these different mutations to be paternal for all informative cases analyzed (P=2. 4x10-7; 95% confidence limits 87%-100%). Advanced paternal age was noted for the fathers of patients with Crouzon syndrome or Pfeiffer syndrome, compared with the fathers of control individuals (34. 50+/-7.65 years vs. 30.45+/-1.28 years, P<.01). Our data on advanced paternal age corroborates and extends previous clinical evidence based on statistical analyses as well as additional reports of advanced paternal age associated with paternal origin of three sporadic mutations causing Apert syndrome (FGFR2) and achondroplasia (FGFR3). Our results suggest that older men either have accumulated or are more susceptible to a variety of germline mutations.
Mechanisms of Development | 2000
David Johnson; Sachiko Iseki; Andrew O.M. Wilkie; Gillian M. Morriss-Kay
Sutural growth depends on maintenance of a balance between proliferation of osteogenic stem cells and their differentiation to form new bone, so that the stem cell population is maintained until growth of the skull is complete. The identification of heterozygous mutations in FGFR1, -2 and -3 and TWIST as well as microdeletions of TWIST in human craniosynostosis syndromes has highlighted these genes as playing important roles in maintaining the suture as a growth centre. In contrast to Drosophila, a molecular relationship between human (or other vertebrate) TWIST and FGFR genes has not yet been established. TWIST mutations exert their effect via haploinsufficiency whereas FGFR mutations have a gain-of-function mechanism of action. To investigate the biological basis of FGFR signalling pathways in the developing calvarium we compared the expression patterns of Twist with those of Fgfr1, -2 and -3 in the fetal mouse coronal suture over the course of embryonic days 14-18, as the suture is initiated and matures. Our results show that: (1) Twist expression precedes that of Fgfr genes at the time of initiation of the coronal suture; (2) in contrast to Fgfr transcripts, which are localised within and around the developing bone domains, Twist is expressed by the midsutural mesenchyme cells. Twist expression domains show some overlap with those of Fgfr2, which is expressed in the most immature (proliferating) osteogenic tissue.
Clinical Genetics | 2005
Fernanda Sarquis Jehee; David Johnson; Luis Garcia Alonso; Denise P. Cavalcanti; E. de Sá Moreira; Fernando Lopes Alberto; Fernando Kok; Chong Kim; Steven A. Wall; Ethylin Wang Jabs; Simeon A. Boyadjiev; Andrew O.M. Wilkie; Maria Rita Passos-Bueno
Trigonocephaly is a rare form of craniosynostosis characterized by the premature closure of the metopic suture. To contribute to a better understanding of the genetic basis of metopic synostosis and in an attempt to restrict the candidate regions related to metopic suture fusion, we studied 76 unrelated patients with syndromic and non‐syndromic trigonocephaly. We found a larger proportion of syndromic cases in our population and the ratio of affected male to female was 1.8 : 1 and 5 : 1 in the non‐syndromic and syndromic groups, respectively. A microdeletion screening at 9p22‐p24 and 11q23‐q24 was carried out for all patients and deletions in seven of them were detected, corresponding to 19.4% of all syndromic cases. Deletions were not found in non‐syndromic patients. We suggest that a molecular screening for microdeletions at 9p22‐p24 and 11q23‐q24 should be offered to all syndromic cases with an apparently normal karyotype because it can potentially elucidate the cause of trigonocephaly in this subset of patients. We also suggest that genes on the X‐chromosome play a major role in syndromic trigonocephaly.
Human Mutation | 2009
Elena G. Bochukova; Tony Roscioli; Dale J. Hedges; Indira B. Taylor; David Johnson; David J. David; Prescott L. Deininger; Andrew O.M. Wilkie
Apert syndrome (AS) is a severe disorder, characterized by craniosynostosis and complex syndactyly of the hands and feet. Two heterozygous gain‐of‐function substitutions (Ser252Trp and Pro253Arg) in exon IIIa of fibroblast growth factor receptor 2 (FGFR2) are responsible for >98% of cases. Here we describe two novel mutations in FGFR2 in the two patients in whom a mutation had not previously been found in our cohort of 227 AS cases. The first is a 1.93‐kb deletion, removing exon IIIc and substantial portions of the flanking introns. This is the first large FGFR2 deletion described in any individual with craniosynostosis. The other mutation is a 5′ truncated Alu insertion into exon IIIc. This is the third Alu insertion identified in AS; all have occurred within an interval of only 104 bp, representing an enrichment of over a million‐fold compared to the background genomic rate. We show that the inserted Alu element belongs to a small subfamily, not previously known to be mobile, which we term Alu Yk13. Both the deletion and insertion are likely to act by a similar gain‐of‐function mechanism in which disruption of exon IIIc leads to illegitimate mesenchymal expression of an FGFR2 spliceform containing the alternatively spliced exon IIIb. All the AS‐associated Alu insertions have arisen in the paternal germline; we propose that their enrichment in FGFR2 is driven by positive selection of the mutant spermatogonial progenitors, a mechanism analogous to that explaining why the canonical AS nucleotide substitutions also reach exceptionally high levels in sperm. Hum Mutat 30, 204–211, 2009.
Science Translational Medicine | 2016
R Jarrett; Mariolina Salio; Antonia Lloyd-Lavery; Sumithra Subramaniam; E Bourgeois; Charles Archer; Ka Lun Cheung; Clare S. Hardman; David Chandler; Maryam Salimi; Danuta Gutowska-Owsiak; Jorge Bernardino de la Serna; Padraic G. Fallon; Helen E. Jolin; Andrew N. J. McKenzie; Andrzej Dziembowski; Ewa Izabela Podobas; Wojciech Bal; David Johnson; D. Branch Moody; Vincenzo Cerundolo; Graham S. Ogg
Lack of the skin barrier protein filaggrin worsens atopic dermatitis by allergenic activation of CD1a-reactive T cells. Bringing atopic dermatitis up to scratch Targeted therapies are transforming medicine, but complex diseases such as atopic dermatitis are difficult to target. Now, Jarrett et al. report a mechanism that links two contributors to atopic dermatitis pathogenesis—cutaneous inflammation and barrier dysfunction. They found that house dust mite allergen phospholipase (PLA2) can induce neolipid antigens in human skin. These antigens can then be presented by the nonclassical MHC family member CD1a to CD1a-restricted T cells, which contribute to inflammation. The skin barrier protein filaggrin can inhibit PLA2 and decrease this inflammation. Indeed, individuals with filaggrin mutations experience severe atopic dermatitis. These data suggest that barrier dysfunction and inflammation may be linked, and support PLA2 as a target for atopic dermatitis. Atopic dermatitis is a common pruritic skin disease in which barrier dysfunction and cutaneous inflammation contribute to pathogenesis. Mechanisms underlying the associated inflammation are not fully understood, and although Langerhans cells expressing the nonclassical major histocompatibility complex (MHC) family member CD1a are known to be enriched within lesions, their role in clinical disease pathogenesis has not been studied. We observed that house dust mite (HDM) allergen generates neolipid antigens presented by CD1a to T cells in the blood and skin lesions of affected individuals. HDM-responsive CD1a-reactive T cells increased in frequency after birth in individuals with atopic dermatitis and showed rapid effector function, consistent with antigen-driven maturation. In HDM-challenged human skin, we observed phospholipase A2 (PLA2) activity in vivo. CD1a-reactive T cell activation was dependent on HDM-derived PLA2, and such cells infiltrated the skin after allergen challenge. Moreover, we observed that the skin barrier protein filaggrin, insufficiency of which is associated with atopic skin disease, inhibited PLA2 activity and decreased CD1a-reactive PLA2-generated neolipid-specific T cell activity from skin and blood. The most widely used classification schemes of hypersensitivity suggest that nonpeptide stimulants of T cells act as haptens that modify peptides or proteins; however, our results show that HDM proteins may also generate neolipid antigens that directly activate T cells. These data define PLA2 inhibition as a function of filaggrin, supporting PLA2 inhibition as a therapeutic approach.
American Journal of Medical Genetics Part A | 2003
Shih-hsin Kan; David Johnson; Henk Giele; Andrew O.M. Wilkie
HOXD13 is the most 5′ of the HOXD cluster of homeobox genes in chromosome band 2q31.1. Heterozygous expansions of a polyalanine tract in HOXD13 are typically associated with synpolydactyly characterized by insertional digit duplication associated with syndactyly. We screened for mutations of HOXD13 in patients with a variety of limb malformations and identified a novel heterozygous mutation (758‐2delA) in a three‐generation family without the typical synpolydactyly phenotype in the hands, but with bilateral partial duplication of the 2nd metatarsals within the first web space of the feet. This mutation locates in the acceptor splice site of exon 2 and is predicted to cause failure of normal splicing of HOXD13. The foot abnormality in this family is similar to that described in two families by Goodman et al. [ 1998 : Am. J. Hum. Genet. 63: 992–1000] in which different deletions of HOXD13 were reported. These findings together lend support to a distinct phenotype resulting from haploinsufficiency of HOXD13.