Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David L. Boucher is active.

Publication


Featured researches published by David L. Boucher.


Philosophical Transactions of the Royal Society A | 2011

In vivo Cerenkov luminescence imaging: a new tool for molecular imaging

Gregory S. Mitchell; Ruby K. Gill; David L. Boucher; Changqing Li; Simon R. Cherry

Cerenkov radiation is a phenomenon where optical photons are emitted when a charged particle moves faster than the speed of light for the medium in which it travels. Recently, we and others have discovered that measurable visible light due to the Cerenkov effect is produced in vivo following the administration of β-emitting radionuclides to small animals. Furthermore, the amounts of injected activity required to produce a detectable signal are consistent with small-animal molecular imaging applications. This surprising observation has led to the development of a new hybrid molecular imaging modality known as Cerenkov luminescence imaging (CLI), which allows the spatial distribution of biomolecules labelled with β-emitting radionuclides to be imaged in vivo using sensitive charge-coupled device cameras. We review the physics of Cerenkov radiation as it relates to molecular imaging, present simulation results for light intensity and spatial distribution, and show an example of CLI in a mouse cancer model. CLI allows many common radiotracers to be imaged in widely available in vivo optical imaging systems, and, more importantly, provides a pathway for directly imaging β−-emitting radionuclides that are being developed for therapeutic applications in cancer and that are not readily imaged by existing methods.


Cancer Research | 2006

Male Germ Cell–Associated Kinase, a Male-Specific Kinase Regulated by Androgen, Is a Coactivator of Androgen Receptor in Prostate Cancer Cells

Ai Hong Ma; Liang Xia; Sonal J. Desai; David L. Boucher; Yi Guan; Hsiu-Ming Shih; Xu Bao Shi; Ralph W. deVere White; Hong Wu Chen; Cliff G. Tepper; Hsing Jien Kung

Androgen receptor (AR) is a ligand-induced transcriptional factor, which plays an important role in the normal development of prostate as well as in the progression of prostate cancer. Numerous coactivators, which associate with AR and function to remodel chromatin and recruit RNA polymerase II to enhance the transcriptional potential of AR, have been identified. Among these coactivators, few are protein kinases. In this study, we describe the characterization of a novel protein kinase, male germ cell-associated kinase (MAK), which serves as a coactivator of AR. We present evidence, which indicates that (a) MAK physically associates with AR (MAK and AR are found to be coprecipitated from cell extracts, colocalized in nucleus, and corecruited to prostate-specific antigen promoter in LNCaP as well as in transfected cells); (b) MAK is able to enhance AR transactivation potential in an androgen- and kinase-dependent manner in several prostate cancer cells and synergize with ACTR/steroid receptor coactivator-3 coactivator; (c) small hairpin RNA (shRNA) knocks down MAK expression resulting in the reduction of AR transactivation ability; (d) MAK-shRNA or kinase-dead mutant, when introduced into LNCaP cells, reduces the growth of the cells; and (e) microarray analysis of LNCaP cells carrying kinase-dead MAK mutant showed a significant impediment of AR signaling, indicating that endogenous MAK plays a general role in AR function in prostate cancer cells and likely to be a general coactivator of AR in prostate tissues. The highly restricted expression of this kinase makes it a potentially useful target for intervention of androgen independence.


Bioconjugate Chemistry | 2011

New covalent capture probes for imaging and therapy, based on a combination of binding affinity and disulfide bond formation

Tolulope A. Aweda; Vahid Eskandari; David L. Kukis; David L. Boucher; Bernadette V. Marquez; Heather E. Beck; Gregory S. Mitchell; Simon R. Cherry; Claude F. Meares

We describe the synthesis and development of new reactive DOTA-metal complexes for covalently targeting engineered receptors in vivo, which have superior tumor uptake and clearance properties for biomedical applications. These probes are found to clear efficiently through the kidneys and minimally through other routes, but bind persistently in the tumor target. We also explore the new technique of Cerenkov luminescence imaging to optically monitor radiolabeled probe distribution and kinetics in vivo. Cerenkov luminescence imaging uniquely enables sensitive noninvasive in vivo imaging of a β(-) emitter such as (90)Y with an optical imager.


PLOS ONE | 2012

Modeling truncated AR expression in a natural androgen responsive environment and identification of RHOB as a direct transcriptional target.

Hui Chi Tsai; David L. Boucher; Anthony Martinez; Clifford G. Tepper; Hsing Jien Kung

Recent studies identifying putative truncated androgen receptor isoforms with ligand-independent activity have shed new light on the acquisition of androgen depletion independent (ADI) growth of prostate cancer. In this study, we present a model system in which a C-terminally truncated variant of androgen receptor (TC-AR) is inducibly expressed in LNCaP, an androgen-dependent cell line, which expresses little truncated receptor. We observed that when TC-AR is overexpressed, the endogenous full length receptor (FL-AR) is transcriptionally downmodulated. This in essence allows us to “replace” FL-AR with TC-AR and compare their individual properties in exactly the same genetic and cellular background, which has not been performed before. We show that the TC-AR translocates to the nucleus, activates transcription of AR target genes in the absence of DHT and is sufficient to confer ADI growth to the normally androgen dependent LNCaP line. We also show that while there is significant overlap in the genes regulated by FL- and TC-AR there are also differences in the respective suites of target genes with each AR form regulating genes that the other does not. Among the genes uniquely activated by TC-AR is RHOB which is shown to be involved in the increased migration and morphological changes observed in LN/TC-AR, suggesting a role of RHOB in the regulation of androgen-independent behavior of prostate cancer cells.


Nuclear Medicine and Biology | 2015

Development and characterization of an αvβ6-specific diabody and a disulfide-stabilized αvβ6-specific cys-diabody

Jason B. White; David L. Boucher; Kirstin A. Zettlitz; Anna M. Wu; Julie L. Sutcliffe

INTRODUCTION This work describes the development and characterization of two antibody fragments that specifically target the α(v)β(6) integrin, a non-covalent diabody and a disulfide-stabilized cys-diabody. The diabodies were analyzed for their ability to bind both immobilized and cell surface-bound α(v)β(6). Radiolabeling was done using non-site-specific and site-specific conjugation approaches with N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]-SFB) and the bifunctional chelator 1,4,7-triazacyclononane-triacetic acid maleimide (NOTA-maleimide) and copper-64 ([(64)Cu]), respectively. The affects of each radiolabeling method on RCY, RCP, and immunoreactivity were analyzed for the [(18)F]-FB-α(v)β(6) diabody, [(18)F]-FB-α(v)β(6) cys-diabody, and the [(64)Cu]-NOTA-α(v)β(6) cys-diabody. METHODS Diabodies were constructed from the variable domains of the humanized 6.3G9 anti-α(v)β(6) intact antibody. The anti-α(v(β(6) cys-diabody was engineered with C-terminal cysteines to enable covalent dimerization and site-specific modification. Biochemical characterization included SDS-PAGE, Western blot, and electrospray ionization to confirm MW, and flow cytometry and ELISA experiments were used to determine binding affinity and specificity to α(v)β(6). The diabodies were radiolabeled with [(18)F]-SFB and in addition, the anti-α(v)β(6) cys-diabody was also radiolabeled site-specifically using NOTA-maleimide and [(64)Cu]. Immunoreactivities were confirmed using in vitro cell binding to DX3Puroβ(6) (α(v)β(6)+) and DX3Puro (α(v)β(6)-)cell lines. RESULTS The diabodies were purified from cell culture supernatants with purities >98%. Subnanomolar binding affinity towards αvβ6 was confirmed by ELISA (diabody IC(50)=0.8 nM, cys-diabody IC(50)=0.6 nM) and flow cytometry revealed high specificity only to the DX3Puroβ(6) cell line for both diabodies. RCYs were 22.6%±3.6% for the [(18)F]-FB-α(v)β(6) diabody, 8.3%±1.7% for the [(18)F]-FB-α(v)β(6) cys-diabody and 43.5%±5.5% for the [(64)Cu]-NOTA-α(v)β(6) cys-diabody. In vitro cell binding assays revealed excellent specificity and retention of immunoreactivity ([(18)F]-FB-α(v)β(6) diabody=58.7%±6.7%, [(18)F]-FB-α(v)β(6) cys-diabody=80.4%±4.4%, [(64)Cu]-NOTA-α(v)β(6) cys-diabody=59.4%±0.6%) regardless of the radiolabeling method used. CONCLUSIONS Two novel diabodies with excellent binding affinity and specificity for the α(v)β(6) integrin in vitro were developed. Radiolabeling of the diabodies with fluorine-18 ([(18)F]) and [(64)Cu] revealed advantages and disadvantages with regards to methodologies and RCYs, however immunoreactivities were well preserved regardless of radiolabeling approach.


Optical Molecular Probes, Imaging and Drug Delivery, OMP 2013 | 2013

Photodynamic Therapy Activated with Cerenkov Luminescence from Beta-Emitting Radionuclides

Brad A. Hartl; David L. Boucher; Laura Marcu; Simon R. Cherry

Cerenkov luminescence generated from radionuclides was used as a novel light source for photodynamic therapy. This technique, in conjunction with administration of δ-aminolevulinic acid, was shown to inhibit growth of U-87 glioblastoma cells in vitro.


PLOS ONE | 2012

Establishment of Clonal MIN-O Transplant Lines for Molecular Imaging via Lentiviral Transduction & In Vitro Culture

David L. Boucher; Jane Qian Chen; Simon R. Cherry; Alexander D. Borowsky

As the field of molecular imaging evolves and increasingly is asked to fill the discovery and validation space between basic science and clinical applications, careful consideration should be given to the models in which studies are conducted. The MIN-O mouse model series is an established in vivo model of human mammary precancer ductal carcinoma in situ with progression to invasive carcinoma. This series of transplant lines is propagated in vivo and experiments utilizing this model can be completed in non-engineered immune intact FVB/n wild type mice thereby modeling the tumor microenvironment with biological relevance superior to traditional tumor cell xenografts. Unfortunately, the same qualities that make this and many other transplant lines more biologically relevant than standard cell lines for molecular imaging studies present a significant obstacle as somatic genetic re-engineering modifications common to many imaging applications can be technically challenging. Here, we describe a protocol for the efficient lentiviral transduction of cell slurries derived from precancerous MIN-O lesions, in vitro culture of “MIN-O-spheres” derived from single cell clones, and the subsequent transplantation of these spheres to produce transduced sublines suitable for optical imaging applications. These lines retain the physiologic and pathologic properties, including multilineage differentiation, and complex microanatomic interaction with the host stroma characteristic of the MIN-O model. We also present the in vivo imaging and immunohistochemical analysis of serial transplantation of one such subline and detail the progressive multifocal loss of the transgene in successive generations.


Cancer Research | 2002

Characterization of a Novel Androgen Receptor Mutation in a Relapsed CWR22 Prostate Cancer Xenograft and Cell Line

Clifford G. Tepper; David L. Boucher; Philip E. Ryan; Ai Hong Ma; Liang Xia; Li Fen Lee; Thomas G. Pretlow; Hsing Jien Kung


Molecular Imaging and Biology | 2018

ImmunoPET Imaging of αvβ6 Expression Using an Engineered Anti-αvβ6 Cys-diabody Site-Specifically Radiolabeled with Cu-64: Considerations for Optimal Imaging with Antibody Fragments

Jason B. White; Lina Y. Hu; David L. Boucher; Julie L. Sutcliffe


The Journal of Nuclear Medicine | 2014

Site-specific radiolabeling of an anti-αvβ6 cys-diabody with copper-64: Preclinical evaluation as a PET imaging agent

Jason White; David L. Boucher; Lina Hu; Julie L. Sutcliffe

Collaboration


Dive into the David L. Boucher's collaboration.

Top Co-Authors

Avatar

Jason White

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna M. Wu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lina Hu

University of California

View shared research outputs
Top Co-Authors

Avatar

Ai Hong Ma

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge