Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David L. Bubenheim is active.

Publication


Featured researches published by David L. Bubenheim.


Journal of Plant Physiology | 2001

Comparative floral development of Mir-grown and ethylene-treated, earth-grown Super Dwarf wheat

William F. Campbell; Frank B. Salisbury; Bruce Bugbee; Steven Klassen; Erin Naegle; Darren T. Strickland; Gail E. Bingham; Margarita Levinskikh; Galena M. Iljina; Tatjana D. Veselova; Vladimir N. Sytchev; Igor Podolsky; W. R. McManus; David L. Bubenheim; Joseph Stieber; Gary Jahns

To study plant growth in microgravity, we grew Super Dwarf wheat (Triticum aestivum L.) in the Svet growth chamber onboard the orbiting Russian space station, Mir, and in identical ground control units at the Institute of BioMedical Problems in Moscow, Russia. Seedling emergence was 56% and 73% in the two root-module compartments on Mir and 75% and 90% on earth. Growth was vigorous (produced ca. 1 kg dry mass), and individual plants produced 5 to 8 tillers on Mir compared with 3 to 5 on earth-grown controls. Upon harvest in space and return to earth, however, all inflorescences of the flight-grown plants were sterile. To ascertain if Super Dwarf wheat responded to the 1.1 to 1.7 micromoles mol-1 atmospheric levels of ethylene measured on the Mir prior to and during flowering, plants on earth were exposed to 0, 1, 3, 10, and 20 micromoles mol-1 of ethylene gas and 1200 micromoles mol-1 CO2 from 7 d after emergence to maturity. As in our Mir wheat, plant height, awn length, and the flag leaf were significantly shorter in the ethylene-exposed plants than in controls; inflorescences also exhibited 100% sterility. Scanning-electron-microscopic (SEM) examination of florets from Mir-grown and ethylene-treated, earth-grown plants showed that development ceased prior to anthesis, and the anthers did not dehisce. Laser scanning confocal microscopic (LSCM) examination of pollen grains from Mir and ethylene-treated plants on earth exhibited zero, one, and occasionally two, but rarely three nuclei; pollen produced in the absence of ethylene was always trinucleate, the normal condition. The scarcity of trinucleate pollen, abrupt cessation of floret development prior to anthesis, and excess tillering in wheat plants on Mir and in ethylene-containing atmospheres on earth build a strong case for the ethylene on Mir as the agent for the induced male sterility and other symptoms, rather than microgravity.


Advances in Space Research | 1987

Wheat production in controlled environments

Frank B. Salisbury; Bruce Bugbee; David L. Bubenheim

Our goal is to optimize conditions for maximum yield and quality of wheat to be used in a controlled-environment, life-support system (CELSS) in a Lunar or Martian base or perhaps in a space craft. With yields of 23 to 57 g m-2 d-1 of edible biomass, a minimum size for a CELSS would be between 12 and 30 m2 per person, utilizing about 600 W m-2 of electrical energy for artificial light. Temperature, irradiance, photoperiod, carbon-dioxide levels, humidity, and wind velocity are controlled in state-of-the-art growth chambers. Nutrient solutions (adjusted for wheat) are supplied to the roots via a recirculating system that controls pH by adding HNO3 and controlling the NO3/NH4 ratio in solution. A rock-wool plant support allows direct seeding and densities up to 10,000 plants per meter2. Densities up to 2000 plants m-2 appear to increase seed yield. Biomass production increases almost linearly with increasing irradiance from 400 to 1700 micromoles m-2 s-1 of photosynthetic photon flux (PPF), but the efficiency of light utilization decreases over this range. Photoperiod and temperature both have a profound influence on floral initiation, spikelet formation, stem elongation, and fertilization. High temperatures (25 to 27 degrees C) and long days shorten the life cycle and promote rapid growth, but cooler temperatures (20 degrees C) and shorter days greatly increase seed number per head and thus yield (g m-2). The life cycle is lengthened in these conditions but yield per day (g m-2 d-1) is still increased. We have evaluated about 600 cultivars from around the world and have developed several breeding lines for our controlled conditions. Some of our ultra-dwarf lines (30 to 50 cm tall) look especially promising with high yields and high harvest indices (percent edible biomass).


Advances in Space Research | 1997

Significance of rhizosphere microorganisms in reclaiming water in a CELSS.

C. Greene; David L. Bubenheim; K. Wignarajah

Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponical1y grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising.


Journal of The American Society for Horticultural Science | 1997

PHYTOTOXIC EFFECTS OF GRAY WATER DUE TO SURFACTANTS

David L. Bubenheim; Kanapathipillai Wignarajah; Wade Berry; Theodore Wydeven


Journal of the American Society for Horticultural Science | 1988

Radiation in Controlled Environments: Influence of Lamp Type and Filter Material

David L. Bubenheim; Bruce Bugbee; Frank B. Salisbury


Hortscience | 1993

Accuracy of Quantum Sensors Measuring Yield Photon Flux and Photosynthetic Photon Flux

Charles Barnes; Theodore W. Tibbitts; John C. Sager; Gerald F. Deitzer; David L. Bubenheim; Gus Koerner; Bruce Bugbee


Archive | 1993

Quinoa: An emerging new crop with potential for CELSS

Greg Schlick; David L. Bubenheim


Hortscience | 1995

Spectral Changes in Metal Halide and High-pressure Sodium Lamps Equipped with Electronic Dimming

David L. Bubenheim; Raman Sargis; David Wilson


Hortscience | 1992

GROWTH OF LETTUCE IN ANIONIC SURFACTANTS

Kanapathipillai Wignarajah; David L. Bubenheim; Theodore Wydeven; Wade Berry; Greg Schlick


Hortscience | 1992

LETTUCE SEEDLING RESPONSE TO DETERGENTS RECOMMENDED FOR SPACE TRAVEL

Catherine Greene; David L. Bubenheim; Wade Berry

Collaboration


Dive into the David L. Bubenheim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Podolsky

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge