Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David L. Chamberland is active.

Publication


Featured researches published by David L. Chamberland.


Optics Letters | 2007

Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis

Xueding Wang; David L. Chamberland; David A. Jamadar

The feasibility of photoacoustic tomography (PAT) in imaging human peripheral joints in a noninvasive manner was demonstrated through studies of cadaver human fingers. Based on the intrinsic optical contrast, intra- and extra-articular tissue structures in the finger at the levels of the joints were visualized successfully with satisfactory spatial resolution. The imaging depth of PAT in the near-infrared region enables the cross-sectional imaging of a human finger as a whole organ. As a novel technology with unique advantages, PAT holds promise for early diagnosis of inflammatory joint disorders and accurate monitoring of disease progression and response to therapy.


ACS Nano | 2011

125I-Labeled Gold Nanorods for Targeted Imaging of Inflammation

Xia Shao; Huanan Zhang; Justin R. Rajian; David L. Chamberland; Phillip Sherman; Carole A. Quesada; Alisa E. Koch; Nicholas A. Kotov; Xueding Wang

For better examination of inflammation, we designed inflammation-targeted nuclear and optical dual-modality contrast agents prepared by I-125 radiolabeling of gold nanorods (GdNRs) conjugated with anti-intercellular adhesion molecule 1 (ICAM-1) antibody. The bioactivity and specific binding of the PEGylated (125)I-ICAM-GdNR conjugates to the ICAM-1 was validated through ELISA testing. Inflammation-targeted imaging was then conducted on an adjuvant-induced arthritic rat model which demonstrated an elevation of ICAM-1 level in the affected ankle joints. Facilitated by the I-125 radioisotope and the whole-body imaging via the Gamma camera, the time-dependent distribution of the systemically injected agent as well as the uptake of the agent in the inflammatory articular tissues could be examined conveniently and quantitatively. The success in targeted delivery of gold nanoparticles to inflammatory tissue enables both nuclear and optical imaging of inflammation at molecular or cellular level. Other than diagnosis, radiolabeled gold nanoparticles also hold promise for targeted therapy of a variety of disorders.


Medical Physics | 2006

Imaging of joints with laser‐based photoacoustic tomography: An animal study

Xueding Wang; David L. Chamberland; Paul L. Carson; J. Brian Fowlkes; Ronald O. Bude; David A. Jamadar; Blake J. Roessler

Photoacoustic tomography (PAT), a nonionizing, noninvasive, laser-based technology was adapted to joint imaging for the first time. Pulsed laser light in the near-infrared region was directed toward a joint with resultant ultrasonic signals recorded and used to reconstruct images that present the optical properties in subsurface joint tissues. The feasibility of this joint imaging system was validated on a Sprague Dawley rat tail model and verified through comparison with histology. With sufficient penetration depth, PAT realized tomographic imaging of a joint as a whole organ noninvasively. Based on the optical contrast, various intra- and extra-articular tissues, including skin, fat, muscle, blood vessels, synovium and bone, were presented successfully in images with satisfactory spatial resolution that was primarily limited by the bandwidth of detected photoacoustic signals rather than optical diffusion as occurs in traditional optical imaging. PAT, with its intrinsic advantages, may provide a unique opportunity to enable the early diagnosis of inflammatory joint disorders, e.g., rheumatoid arthritis, and to monitor therapeutic outcomes with high sensitivity and accuracy.


Journal of Neuroscience Methods | 2008

Noninvasive reflection mode photoacoustic imaging through infant skull toward imaging of neonatal brains.

Xueding Wang; David L. Chamberland; Guohua Xi

The feasibility of functional imaging of neonatal brains was studied in a noninvasive transcranial manner by using reflection mode photoacoustic technique for the first time. Experiments were conducted to examine the quality of photoacoustic signals and consequent images across a newborn infant skull. With the designed system, photoacoustic imaging of blood vessels through the infant skull has been achieved with an axial resolution up to 50mum and a lateral resolution up to 420mum. Experimental results also indicate that photoacoustic imaging of neonatal brain with a depth of 21mm or more beneath the skull is feasible when working with near-infrared light. Moreover, the performance of this technique for measuring and monitoring the changes in blood oxygenation level through the newborn infant skull has also been explored. This study suggests that reflection mode photoacoustic imaging holds promise to become a novel and powerful tool for noninvasive diagnosis, monitoring and prognosis of disorders in neonatal brains.


Journal of Biomedical Optics | 2011

Dual-mode imaging with radiolabeled gold nanorods

Ashish Agarwal; Xia Shao; Justin R. Rajian; Huanan Zhang; David L. Chamberland; Nicholas A. Kotov; Xueding Wang

Many nanoparticle contrast agents have difficulties with deep tissue and near-bone imaging due to limited penetration of visible photons in the body and mineralized tissues. We are looking into the possibility of mediating this problem while retaining the capabilities of the high spatial resolution associated with optical imaging. As such, the potential combination of emerging photoacoustic imaging and nuclear imaging in monitoring of antirheumatic drug delivery by using a newly developed dual-modality contrast agent is investigated. The contrast agent is composed of gold nanorods (GNRs) conjugated to the tumor necrosis factor (TNF-α) antibody and is subsequently radiolabeled by (125)I. ELISA experiments designed to test TNF-α binding are performed to prove the specificity and biological activity of the radiolabeled conjugated contrast agent. Photoacoustic and nuclear imaging are performed to visualize the distribution of GNRs in articular tissues of the rat tail joints in situ. Findings from the two imaging modalities correspond well with each other in all experiments. Our system can image GNRs down to a concentration of 10 pM in biological tissues and with a radioactive label of 5 μCi. This study demonstrates the potential of combining photoacoustic and nuclear imaging modalities through one targeted contrast agent for noninvasive monitoring of drug delivery as well as deep and mineralized tissue imaging.


Integrative Biology | 2010

Optical imaging: new tools for arthritis

David L. Chamberland; Yebin Jiang; Xueding Wang

Conventional radiography, ultrasound, CT, MRI, and nuclear imaging are the current imaging modalities used for clinical evaluation of arthritis which is highly prevalent and a leading cause of disability. Some of these types of imaging are also used for monitoring disease progression and treatment response of arthritis. However, their disadvantages limit their utilities, such as ionizing radiation for radiography, CT, and nuclear imaging; suboptimal tissue contrast resolution for radiography, CT, ultrasound, and nuclear imaging; high cost for CT and MRI and nuclear imaging; and long data-acquisition time with ensuing patient discomfort for MRI. Recently, there have been considerable advances in nonionizing noninvasive optical imaging which has demonstrated promise for early diagnosis, monitoring therapeutic interventions and disease progression of arthritis. Optical based molecular imaging modalities such as fluorescence imaging have shown high sensitivity in detection of optical contrast agents and can aid early diagnosis and ongoing evaluation of chronic inflammatory arthritis. Optical transillumination imaging or diffuse optical tomography may differentiate normal joint clear synovial fluid from turbid and pink medium early in the inflammatory process. Fourier transform infrared spectroscopy has been used to evaluate fluid composition from joints affected by arthritis. Hemodynamic changes such as angiogenesis, hypervascularization, and hypoxia in arthritic articular tissue can potentially be observed by diffuse optical tomography and photoacoustic tomography. Optical measurements could also facilitate quantification of hemodynamic properties such as blood volume and oxygenation levels at early stages of inflammatory arthritis. Optical imaging provides methodologies which should contribute to detection of early changes and monitoring of progression in pathological characteristics of arthritis, with relatively simple instrumentation.


Journal of Biomedical Optics | 2008

Photoacoustic tomography of carrageenan-induced arthritis in a rat model

David L. Chamberland; Xueding Wang; Blake J. Roessler

Laser-based photoacoustic tomography (PAT), a novel, nonionizing, noninvasive, laser-based technology, has been adapted to the diagnosis and imaging of inflammatory arthritis. A commonly used adjuvant induced arthritis model using carrageenan was employed to simulate acute rheumatoid arthritis in rat tail joints. Cross-sectional photoacoustic images of joints affected by acute inflammation were compared to those of the control. The diameter of the periosteum and the optical absorption of intra-articular tissue were measured on each joint image. Significant differences were found on PAT imaging between the affected joints and the control for both variables measured, including enlarged periosteum diameter and enhanced intra-articular optical absorption occurring in the joints affected with carrageenan-induced arthritis. Anatomical correlation with histological sections of imaged joints and microMRI results verified the findings of PAT. This suggests that PAT has the potential for highly sensitive diagnosis and evaluation of pathologic hallmarks of acute inflammatory arthritis.


Biomedical Optics Express | 2013

Characterization and treatment monitoring of inflammatory arthritis by photoacoustic imaging: a study on adjuvant-induced arthritis rat model

Justin R. Rajian; Xia Shao; David L. Chamberland; Xueding Wang

Neovascularity also known as angiogenesis is an early feature of inflammatory arthritis disease. Therefore, identifying the development of neovascularity is one way to potentially detect and characterize arthritis. Laser-based photoacoustic imaging (PAI) is an emerging biomedical imaging modality which may aid in the detection of both early and continued development of neovascularity. In this work, we investigated the feasibility of PAI to measure angiogenesis, for the purpose of evaluating and monitoring inflammatory arthritis and responses to treatment. The imaging results on an arthritis rat model demonstrate that 1) there is noticeable enhancement in image intensities in the arthritic ankle joints when compared to the normal joints, and 2) there is noticeable decrease in image intensities in the arthritic ankle joints after treatment when compared to the untreated arthritic joints. In order to validate the findings from PAI, we performed positron emission tomography (PET) and histology on the same joints. The diameters of the ankle joints, as a clinical score of the arthritis, were also measured at each time point.


Progress in Biomedical Optics and Imaging - Proceedings of SPIE | 2009

Reflection mode photoacoustic imaging through infant skull toward noninvasive imaging of neonatal brains

Xueding Wang; J. Brian Fowlkes; David L. Chamberland; Guohua Xi; Paul L. Carson

The feasibility of transcranial imaging of neonatal brains with reflection mode photoacoustic technology has been explored. By using unembalmed infant skulls and fresh canine brains, experiments have been conducted to examine the ultrasound and light attenuation in the skull bone as well as consequent photoacoustic images through the skull. Mapping of blood vessels in a transcranial manner has been successfully achieved by employing the raster scan of a single-element transducer or a 2D PVDF array transducer. Experimental results indicate that noninvasive photoacoustic imaging of neonatal brain with a depth of 2 cm or more beneath the skull is feasible when working with near-infrared light. This study suggests that the emerging photoacoustic technology may become a powerful tool in the future for noninvasive diagnosis, monitoring and prognosis of disorders in prenatal or neonatal brains.


Proceedings of SPIE | 2008

Photoacoustic tomography of small-animal and human peripheral joints

Xueding Wang; David L. Chamberland; J. Brian Fowlkes; Paul L. Carson; David A. Jamadar

As an emerging imaging technology that combines the merits of both light and ultrasound, photoacoustic tomography (PAT) holds promise for screening and diagnosis of inflammatory joint diseases such as rheumatoid arthritis. In this study, the feasibility of PAT in imaging small-animal joints and human peripheral joints in a noninvasive manner was explored. Ex vivo rat tail and fresh cadaveric human finger joints were imaged. Based on the intrinsic optical contrast, intra- and extra-articular tissue structures in the joints were visualized successfully. Using light in the near-infrared region, the imaging depth of PAT is sufficient for cross-sectional imaging of a human peripheral joint as a whole organ. PAT, as a novel imaging modality with unique advantages, may contribute significantly to the early diagnosis of inflammatory joint disorders and accurate monitoring of disease progression and response to therapy.

Collaboration


Dive into the David L. Chamberland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xia Shao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge