David Lepetit
University of Lyon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Lepetit.
Current Biology | 2005
Benjamin Loppin; David Lepetit; Steve Dorus; Pierre Couble; Timothy L. Karr
BACKGROUND Although evolutionary novelty by gene duplication is well established, the origin and maintenance of essential genes that provide entirely new functions (neofunctionalization) is still largely unknown. Drosophila is a good model for the search of genes that are young enough to allow deciphering the molecular details of their evolutionary history. Recent years have seen increased interest in genes specifically required for male fertility because they often evolve rapidly. A special class of genes affecting male fertility, the paternal effect genes, have also become a focus of study to geneticists and reproductive biologists interested in fertilization and sperm-egg interactions. RESULTS Using molecular genetics and the annotated Drosophila melanogaster genome, we identified CG14251 as the Drosophila paternal effect gene, ms(3)K81 (K81). This assignment was subsequently confirmed by P-element rescue of K81. A search for orthologous K81 sequences revealed that the distribution of K81 is surprisingly restricted to the 9 species comprising the melanogaster subgroup. Phylogenetic analyses indicate that K81 arose through duplication, most likely retroposition, of a ubiquitously expressed gene before the radiation of the melanogaster subgroup, followed by a period of rapid divergence and acquisition of a critical male germline-specific function. Interestingly, K81 has adopted the expression profile of a flanking gene suggesting that transcriptional coregulation may have been important in the neofunctionalization of K81. CONCLUSION We present a detailed case history of the origin and evolution of a new essential gene and, in so doing, provide the first molecular identification of a Drosophila paternal effect gene, ms(3)K81 (K81).
Evolution | 2003
Christian Biémont; Christiane Nardon; Grégory Deceliere; David Lepetit; Catherine Lœvenbruck; Cristina Vieira
Abstract.— Transposable elements (TEs), which promote various kinds of mutations, constitute a large fraction of the genome. How they invade natural populations and species is therefore of fundamental importance for understanding the dynamics of genetic diversity and genome composition. On the basis of 85 samples of natural populations of Drosophila simulans, we report the distributions of the genome insertion site numbers of nine TEs that were chosen because they have a low average number of sites. Most populations were found to have 0–3 insertion sites, but some of them had a significantly higher number of sites for a given TE. The populations located in regions outside Africa had the highest number of sites for all elements except HMS Beagle and Coral, suggesting a recent increase in the activity of some TEs associated with the colonization patterns of Drosophila simulans. The element Tirant had a very distinctive pattern of distribution: it was identified mainly in populations from East Africa and some islands in the Indian Ocean, and its insertion site number was low in all these populations. The data suggest that the genome of the entire species of Drosophila simulans may be being invaded by TEs from populations in which they are present in high copy number.
Proceedings of the Royal Society of London B: Biological Sciences | 1998
Cristina Vieira; Philippe Aubry; David Lepetit; Christian Biémont
The copy number of the retrotransposable element 412 of Drosophila simulans from populations collected worldwide shows a negative correlation with minimum temperature. No association was detected for the roo/B104 element. The possibility that selective pressures might regulate the 412 copy number in these natural populations is supported by detection of selection against the detrimental effects of 412 insertions (estimated by the proportion of insertions on the X chromosome in comparison with the autosomes) but not roo/B104. These data reveal different spatial patterns for two element families, and strongly suggest that some factors in the environment, such as temperature, may interfere with the control of retrotransposition, thus affecting important aspects of genomic evolution.
Applied and Environmental Microbiology | 2009
Sabine Patot; David Lepetit; Delphine Charif; Julien Varaldi; Frédéric Fleury
ABSTRACT For insects, the prevalence of numerous vertically transmitted viruses can be high in their host populations. These viruses often have few, if any, pathological effects on their hosts, and consequently, many of them can remain unnoticed for long periods, despite their potential role in the evolution of the host phenotype. Some females of Leptopilina boulardi, a solitary parasitoid of Drosophila larvae, are infected by an inherited virus (LbFV) that manipulates the behavior of the wasp by increasing its tendency to lay eggs in a host that is already parasitized (superparasitism). This behavioral alteration allows horizontal transmission of the virus within superparasitized Drosophila larvae. Using suppressive subtractive hybridization with infected and uninfected lines, we identified one putative viral sequence. Based on this sequence, we developed a simple PCR test. We tested the correlation between the superparasitism phenotype and PCR amplification of the putative viral marker using several experimental conditions (including horizontal transfers) and several parasitoid genotypes. All of the results revealed that there was a perfect match between the superparasitism phenotype and the amplification profile, which validated use of the molecular marker as a tool to track the presence of the virus and provided the first genomic data for this fascinating virus. The results also show that there was very efficient horizontal and vertical transmission of LbFV, which probably explains its high prevalence in the French populations that we sampled (67 and 70% of infected females). This manipulative virus is likely to play a major role in the ecology and evolution of its parasitoid host.
Genetica | 2000
Christian Biémont; Cristina Vieira; Nathalie Borie; David Lepetit
Drosophila simulans presents a large variation in copy number among various transposable elements (TEs) and among natural populations for a given element. Some elements such as HMS beagle, blood, flea, tirant, coral, prygunjockey, F, nomade and mariner are absent in most populations, except in one or two which have copies on their chromosome arms. This suggests that some TEs are being awakened in D. simulans and are in the process of invading the species while it is colonizing the world. The elements 412 and roo/B104 present a wide insertion polymorphism among D. simulans populations, but only the 412 copy number follows a temperature cline. One population (Canberra from Australia) has a very high copy number for the 412 element and for many other TEs as well, indicating that some populations may have lost control of some of their TEs. While the 412 transposition rate is similar in all populations, its transcription level throughout developmental stages varies with populations, depending on copy number. Populations with 412 copy number higher than 10–12 exhibit co-suppression, while the expression in populations with lower numbers depends on the insertion location. All these results suggest genomic invasions by 412 and other TEs during the worldwide spread of the D. simulans species.
Genetica | 2000
David Lepetit; Stéphanie Pasquet; Michelle Olive; Nadine Thézé; Pierre Thiébaud
We have characterised from Xenopus laevis two new short interspersed repetitive elements, we have named Glider and Vision, that belong to the family of miniature inverted-repeat transposable elements (MITEs). Glider was first characterised in an intronic region of the α-tropomyosin (α-TM) gene and database search has revealed the presence of this element in 10 other Xenopus laevis genes. Glider elements are about 150 bp long and for some of them, their terminal inverted repeats are flanked by potential target-site duplications. Evidence for the mobility of Glider element has been provided by the presence/absence of one element at corresponding location in duplicated α-TM genes. Vision element has been identified in the promoter region of the cyclin dependant kinase 2 gene (cdk2) where it is boxed in a Glider element. Vision is 284 bp long and is framed by 14-bp terminal inverted repeats that are flanked by 7-bp direct repeats. We have estimated that there are about 20,000 and 300 copies of Glider and Vision respectively scattered throughout the laevis genome. Every MITEs elements but two described in our study are found either in 5′ or in 3′ regulatory regions of genes suggesting a potential role in gene regulation.
Molecular Ecology | 2002
David Lepetit; A. Brehm; P. Fouillet; Christian Biémont
The insertion site numbers of the retrotransposable elements (TE) 412, gypsy and bilbo were determined in individuals of five distinct natural populations of the endemic species Drosophila madeirensis from the island of Madeira. The TE distributions were compared to those of the paleartic, widespread and phylogenetically closely related species, D. subobscura. In situ hybridization and Southern blots showed that in D. madeirensis the number of insertion sites ranged between 10 and 15, three and six, and 35 and 42 for elements 412, gypsy and bilbo, respectively. The corresponding values for D. subobscura were similar. Two of these elements, 412 and gypsy, had very few insertions in the heterochromatin, unlike bilbo, which displayed a high heterochromatic insertion number. The Southern band polymorphism was very high, leading to within‐population variation of 97.2%, whatever the population and the TE concerned. Using the polymorphic TE insertion sites as markers to analyse population structure by amova, adapted for RAPD (Randomly Amplified Polymorphic DNA) data, we found small but significant genetic differences between the populations on Madeira. This slight differentiation, coupled with similar copy numbers for each TE between populations, suggests that the D. madeirensis species consists of a single, only slightly subdivided population. These data also show that insular populations and endemic species of Drosophila can have as many copies of TEs as more widespread species.
Journal of General Virology | 2016
Julien Martinez; David Lepetit; Marc Ravallec; Frédéric Fleury; Julien Varaldi
Parasitoid wasps can be found in association with heritable viruses. Although some viruses have been shown to profoundly affect the biology and evolution of parasitoid wasps, the genetic and phenotypic diversity of parasitoid-associated viruses remains largely unexplored. We previously discovered a behaviour-manipulating DNA virus in the parasitoid wasp Leptopilina boulardi. In this species, which lays its eggs inside Drosophila larvae, Leptopilina boulardi filamentous virus (LbFV) forces the females to lay their eggs in already parasitized Drosophila larvae. This behavioural manipulation increases the chances for the horizontal transmission of the virus. Here, we describe in the same parasitoid species another virus, which we propose to call Leptopilina boulardi toti-like virus (LbTV). This double-stranded RNA virus is highly prevalent in insect laboratory lines as well as in parasitoids caught in the field. In some cases, LbTV was found in coinfection with LbFV, but did not affect the behaviour of the wasp. Instead we found that the presence of LbTV correlates with an increase in the number of offspring, mostly due to increased survival of parasitoid larvae. LbTV is vertically transmitted mostly through the maternal lineage even if frequent paternal transmission also occurs. Unlike LbFV, LbTV is not horizontally transmitted. Its genome encodes a putative RNA-dependent RNA polymerase (RdRp) showing similarities with RdRps of Totiviridae. These results underline the high incidence and diversity of inherited viruses in parasitoids as well as their potential impact on the phenotype of their hosts.
Parasitoid Viruses#R##N#Symbionts and Pathogens | 2012
Julien Varaldi; Julien Martinez; Sabine Patot; David Lepetit; Frédéric Fleury; Sylvain Gandon
Publisher Summary This chapter reviews the current understanding of this parasitoid/virus system, describing both experimental approaches and theoretical studies. It suggests that virus-induced superparasitism manipulation may be common since the theoretical model used predicts that all parasitoid infectious viruses of the genital tract would be selected for the enhancement of the natural superparasitism tendency of their parasitoid host. A fundamental feature of viruses is their ability to colonize new cells or individuals through horizontal transmission. It is highly probable that most viruses found in the reproductive tract of parasitoids have the capacity to be horizontally transmitted. Some virus lineages may have lost this capacity, like polydnaviruses, but horizontal transmission might have played a crucial role during their evolution. The results obtained on the LbFV/L. boulardi interaction indicate that horizontal transmission between parasitoid lineages is permitted by the occurrence of superparasitism. Subsequently, natural selection has favored the emergence of a parasitic strategy manipulating the occurrence of superparasitism behavior.
Genome Biology and Evolution | 2017
David Lepetit; Benjamin Gillet; Sandrine Hughes; Ken Kraaijeveld; Julien Varaldi
Parasites are sometimes able to manipulate the behavior of their hosts. However, the molecular cues underlying this phenomenon are poorly documented. We previously reported that the parasitoid wasp Leptopilina boulardi which develops from Drosophila larvae is often infected by an inherited DNA virus. In addition to being maternally transmitted, the virus benefits from horizontal transmission in superparasitized larvae (Drosophila that have been parasitized several times). Interestingly, the virus forces infected females to lay eggs in already parasitized larvae, thus increasing the chance of being horizontally transmitted. In a first step towards the identification of virus genes responsible for the behavioral manipulation, we present here the genome sequence of the virus, called LbFV. The sequencing revealed that its genome contains an homologous repeat sequence (hrs) found in eight regions in the genome. The presence of this hrs may explain the genomic plasticity that we observed for this genome. The genome of LbFV encodes 108 ORFs, most of them having no homologs in public databases. The virus is however related to Hytrosaviridae, although distantly. LbFV may thus represent a member of a new virus family. Several genes of LbFV were captured from eukaryotes, including two anti-apoptotic genes. More surprisingly, we found that LbFV captured from an ancestral wasp a protein with a Jumonji domain. This gene was afterwards duplicated in the virus genome. We hypothesized that this gene may be involved in manipulating the expression of wasp genes, and possibly in manipulating its behavior.Parasites are sometimes able to manipulate the behaviour of their hosts. However, the molecular cues underlying this phenomenon are poorly documented. We previously reported that the parasitoid wasp Leptopilina boulardi which develops from Drosophila larvae is often infected by an inherited DNA virus. In addition to being maternally transmitted, the virus benefits from horizontal transmission in superparasitized larvae (Drosophila that have been parasitized several times). Interestingly, the virus forces infected females to lay eggs in already parasitized larvae, thus increasing the chance of being horizontally transmitted. In a first step towards the identification of virus genes responsible for the behavioural manipulation, we present here the genome sequence of the virus, called LbFV. The sequencing revealed that its genome contains an homologous repeat sequence (hrs) found in 8 regions in the genome. The presence of this hrs may explain the genomic plasticity that we observed for this genome. The genome of LbFV encodes 108 ORFs, most of them having no homologs in public databases. The virus is however related to Hytrosaviridae, although distantly. LbFV may thus represent a member of a new virus family. Several genes of LbFV were captured from eukaryotes, including two anti-apoptotic genes. More surprisingly, we found that LbFV captured from an ancestral wasp a protein with a Jumonji domain. This gene was afterwards duplicated in the virus genome. We hypothesized that this gene may be involved in manipulating the expression of wasp genes, and possibly in manipulating its behaviour.