Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M. Blei is active.

Publication


Featured researches published by David M. Blei.


Journal of the American Statistical Association | 2006

Hierarchical Dirichlet Processes

Yee Whye Teh; Michael I. Jordan; Matthew J. Beal; David M. Blei

We consider problems involving groups of data where each observation within a group is a draw from a mixture model and where it is desirable to share mixture components between groups. We assume that the number of mixture components is unknown a priori and is to be inferred from the data. In this setting it is natural to consider sets of Dirichlet processes, one for each group, where the well-known clustering property of the Dirichlet process provides a nonparametric prior for the number of mixture components within each group. Given our desire to tie the mixture models in the various groups, we consider a hierarchical model, specifically one in which the base measure for the child Dirichlet processes is itself distributed according to a Dirichlet process. Such a base measure being discrete, the child Dirichlet processes necessarily share atoms. Thus, as desired, the mixture models in the different groups necessarily share mixture components. We discuss representations of hierarchical Dirichlet processes in terms of a stick-breaking process, and a generalization of the Chinese restaurant process that we refer to as the “Chinese restaurant franchise.” We present Markov chain Monte Carlo algorithms for posterior inference in hierarchical Dirichlet process mixtures and describe applications to problems in information retrieval and text modeling.


Journal of Machine Learning Research | 2003

Matching words and pictures

Kobus Barnard; Pinar Duygulu; David A. Forsyth; Nando de Freitas; David M. Blei; Michael I. Jordan

We present a new approach for modeling multi-modal data sets, focusing on the specific case of segmented images with associated text. Learning the joint distribution of image regions and words has many applications. We consider in detail predicting words associated with whole images (auto-annotation) and corresponding to particular image regions (region naming). Auto-annotation might help organize and access large collections of images. Region naming is a model of object recognition as a process of translating image regions to words, much as one might translate from one language to another. Learning the relationships between image regions and semantic correlates (words) is an interesting example of multi-modal data mining, particularly because it is typically hard to apply data mining techniques to collections of images. We develop a number of models for the joint distribution of image regions and words, including several which explicitly learn the correspondence between regions and words. We study multi-modal and correspondence extensions to Hofmanns hierarchical clustering/aspect model, a translation model adapted from statistical machine translation (Brown et al.), and a multi-modal extension to mixture of latent Dirichlet allocation (MoM-LDA). All models are assessed using a large collection of annotated images of real scenes. We study in depth the difficult problem of measuring performance. For the annotation task, we look at prediction performance on held out data. We present three alternative measures, oriented toward different types of task. Measuring the performance of correspondence methods is harder, because one must determine whether a word has been placed on the right region of an image. We can use annotation performance as a proxy measure, but accurate measurement requires hand labeled data, and thus must occur on a smaller scale. We show results using both an annotation proxy, and manually labeled data.


knowledge discovery and data mining | 2011

Probabilistic topic models

David M. Blei

Probabilistic topic modeling provides a suite of tools for the unsupervised analysis of large collections of documents. Topic modeling algorithms can uncover the underlying themes of a collection and decompose its documents according to those themes. This analysis can be used for corpus exploration, document search, and a variety of prediction problems. In this tutorial, I will review the state-of-the-art in probabilistic topic models. I will describe the three components of topic modeling: (1) Topic modeling assumptions (2) Algorithms for computing with topic models (3) Applications of topic models In (1), I will describe latent Dirichlet allocation (LDA), which is one of the simplest topic models, and then describe a variety of ways that we can build on it. These include dynamic topic models, correlated topic models, supervised topic models, author-topic models, bursty topic models, Bayesian nonparametric topic models, and others. I will also discuss some of the fundamental statistical ideas that are used in building topic models, such as distributions on the simplex, hierarchical Bayesian modeling, and models of mixed-membership. In (2), I will review how we compute with topic models. I will describe approximate posterior inference for directed graphical models using both sampling and variational inference, and I will discuss the practical issues and pitfalls in developing these algorithms for topic models. Finally, I will describe some of our most recent work on building algorithms that can scale to millions of documents and documents arriving in a stream. In (3), I will discuss applications of topic models. These include applications to images, music, social networks, and other data in which we hope to uncover hidden patterns. I will describe some of our recent work on adapting topic modeling algorithms to collaborative filtering, legislative modeling, and bibliometrics without citations. Finally, I will discuss some future directions and open research problems in topic models.


international acm sigir conference on research and development in information retrieval | 2003

Modeling annotated data

David M. Blei; Michael I. Jordan

We consider the problem of modeling annotated data---data with multiple types where the instance of one type (such as a caption) serves as a description of the other type (such as an image). We describe three hierarchical probabilistic mixture models which aim to describe such data, culminating in correspondence latent Dirichlet allocation, a latent variable model that is effective at modeling the joint distribution of both types and the conditional distribution of the annotation given the primary type. We conduct experiments on the Corel database of images and captions, assessing performance in terms of held-out likelihood, automatic annotation, and text-based image retrieval.


Bayesian Analysis | 2006

Variational inference for Dirichlet process mixtures

David M. Blei; Michael I. Jordan

Dirichlet process (DP) mixture models are the cornerstone of non- parametric Bayesian statistics, and the development of Monte-Carlo Markov chain (MCMC) sampling methods for DP mixtures has enabled the application of non- parametric Bayesian methods to a variety of practical data analysis problems. However, MCMC sampling can be prohibitively slow, and it is important to ex- plore alternatives. One class of alternatives is provided by variational methods, a class of deterministic algorithms that convert inference problems into optimization problems (Opper and Saad 2001; Wainwright and Jordan 2003). Thus far, varia- tional methods have mainly been explored in the parametric setting, in particular within the formalism of the exponential family (Attias 2000; Ghahramani and Beal 2001; Blei et al. 2003). In this paper, we present a variational inference algorithm for DP mixtures. We present experiments that compare the algorithm to Gibbs sampling algorithms for DP mixtures of Gaussians and present an application to a large-scale image analysis problem.


knowledge discovery and data mining | 2011

Collaborative topic modeling for recommending scientific articles

Chong Wang; David M. Blei

Researchers have access to large online archives of scientific articles. As a consequence, finding relevant papers has become more difficult. Newly formed online communities of researchers sharing citations provides a new way to solve this problem. In this paper, we develop an algorithm to recommend scientific articles to users of an online community. Our approach combines the merits of traditional collaborative filtering and probabilistic topic modeling. It provides an interpretable latent structure for users and items, and can form recommendations about both existing and newly published articles. We study a large subset of data from CiteULike, a bibliography sharing service, and show that our algorithm provides a more effective recommender system than traditional collaborative filtering.


The Annals of Applied Statistics | 2007

A CORRELATED TOPIC MODEL OF SCIENCE 1

David M. Blei; John D. Lafferty

Topic models, such as latent Dirichlet allocation (LDA), can be useful tools for the statistical analysis of document collections and other discrete data. The LDA model assumes that the words of each document arise from a mixture of topics, each of which is a distribution over the vocabulary. A limitation of LDA is the inability to model topic correlation even though, for example, a document about genetics is more likely to also be about disease than X-ray astronomy. This limitation stems from the use of the Dirichlet distribution to model the variability among the topic proportions. In this paper we develop the correlated topic model (CTM), where the topic proportions exhibit correlation via the logistic normal distribution [J. Roy. Statist. Soc. Ser. B 44 (1982) 139--177]. We derive a fast variational inference algorithm for approximate posterior inference in this model, which is complicated by the fact that the logistic normal is not conjugate to the multinomial. We apply the CTM to the articles from Science published from 1990--1999, a data set that comprises 57M words. The CTM gives a better fit of the data than LDA, and we demonstrate its use as an exploratory tool of large document collections.


computer vision and pattern recognition | 2009

Simultaneous image classification and annotation

Chong Wang; David M. Blei; Fei-Fei Li

Image classification and annotation are important problems in computer vision, but rarely considered together. Intuitively, annotations provide evidence for the class label, and the class label provides evidence for annotations. For example, an image of class highway is more likely annotated with words “road,” “car,” and “traffic” than words “fish,” “boat,” and “scuba.” In this paper, we develop a new probabilistic model for jointly modeling the image, its class label, and its annotations. Our model treats the class label as a global description of the image, and treats annotation terms as local descriptions of parts of the image. Its underlying probabilistic assumptions naturally integrate these two sources of information. We derive an approximate inference and estimation algorithms based on variational methods, as well as efficient approximations for classifying and annotating new images. We examine the performance of our model on two real-world image data sets, illustrating that a single model provides competitive annotation performance, and superior classification performance.


Journal of the ACM | 2010

The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies

David M. Blei; Thomas L. Griffiths; Michael I. Jordan

We present the nested Chinese restaurant process (nCRP), a stochastic process that assigns probability distributions to ensembles of infinitely deep, infinitely branching trees. We show how this stochastic process can be used as a prior distribution in a Bayesian nonparametric model of document collections. Specifically, we present an application to information retrieval in which documents are modeled as paths down a random tree, and the preferential attachment dynamics of the nCRP leads to clustering of documents according to sharing of topics at multiple levels of abstraction. Given a corpus of documents, a posterior inference algorithm finds an approximation to a posterior distribution over trees, topics and allocations of words to levels of the tree. We demonstrate this algorithm on collections of scientific abstracts from several journals. This model exemplifies a recent trend in statistical machine learning—the use of Bayesian nonparametric methods to infer distributions on flexible data structures.


Journal of the American Statistical Association | 2017

Variational Inference: A Review for Statisticians

David M. Blei; Alp Kucukelbir; Jon McAuliffe

ABSTRACT One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this article, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find a member of that family which is close to the target density. Closeness is measured by Kullback–Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this article is to catalyze statistical research on this class of algorithms. Supplementary materials for this article are available online.

Collaboration


Dive into the David M. Blei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chong Wang

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge