Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco J. R. Ruiz is active.

Publication


Featured researches published by Francisco J. R. Ruiz.


Journal of Quantitative Analysis in Sports | 2015

A generative model for predicting outcomes in college basketball

Francisco J. R. Ruiz; Fernando Pérez-Cruz

Abstract We show that a classical model for soccer can also provide competitive results in predicting basketball outcomes. We modify the classical model in two ways in order to capture both the specific behavior of each National collegiate athletic association (NCAA) conference and different strategies of teams and conferences. Through simulated bets on six online betting houses, we show that this extension leads to better predictive performance in terms of profit we make. We compare our estimates with the probabilities predicted by the winner of the recent Kaggle competition on the 2014 NCAA tournament, and conclude that our model tends to provide results that differ more from the implicit probabilities of the betting houses and, therefore, has the potential to provide higher benefits.


PLOS ONE | 2017

Individual luteolysis pattern after GnRH-agonist trigger for final oocyte maturation

Barbara Lawrenz; Nicolas Garrido; Suzan Samir; Francisco J. R. Ruiz; Laura Melado; Human M. Fatemi

Final oocyte maturation using GnRH-agonist trigger in a GnRH-antagonist protocol is increasingly common, as ovarian hyperstimulation syndrome is almost completely avoided. However, this approach might lead to reduced pregnancy rates due to severe luteolysis. This proof of concept study evaluated the extend of luteolysis by measuring progesterone levels 48 hours after oocyte retrieval in 51 patients, who received GnRH-agonist trigger for final oocyte maturation in a GnRH-antagonist protocol due to the risk of ovarian hyperstimulation syndrome. It was shown, that luteolysis after GnRHa-trigger differs greatly among patients, with progesterone levels ranging from 13.0 ng/ml to ≥ 60.0 ng/ml, 48 hours after oocyte retrieval. Significant positive correlations could be demonstrated between progesterone levels and the number of ovarian stimulation and suppression days (p = 0.006 and p = 0.002 respectively), the total amount of medication used for ovarian suppression (p = 0.015), the level of progesterone on the day of final oocyte maturation (p = 0.008) and the number of retrieved oocytes (p = 0.019). Therefore it was concluded, that luteolysis after GnRH-agonist trigger is patient-specific and also luteal phase support requires individualization. Longer stimulation duration as well as a higher level of progesterone on the day of final oocyte maturation and more retrieved oocytes will result in higher levels of progesterone 48 hours after oocyte retrieval.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016

Infinite Factorial Unbounded-State Hidden Markov Model

Isabel Valera; Francisco J. R. Ruiz; Fernando Pérez-Cruz

There are many scenarios in artificial intelligence, signal processing or medicine, in which a temporal sequence consists of several unknown overlapping independent causes, and we are interested in accurately recovering those canonical causes. Factorial hidden Markov models (FHMMs) present the versatility to provide a good fit to these scenarios. However, in some scenarios, the number of causes or the number of states of the FHMM cannot be known or limited a priori. In this paper, we propose an infinite factorial unbounded-state hidden Markov model (IFUHMM), in which the number of parallel hidden Markov models (HMMs) and states in each HMM are potentially unbounded. We rely on a Bayesian nonparametric (BNP) prior over integer-valued matrices, in which the columns represent the Markov chains, the rows the time indexes, and the integers the state for each chain and time instant. First, we extend the existent infinite factorial binary-state HMM to allow for any number of states. Then, we modify this model to allow for an unbounded number of states and derive an MCMC-based inference algorithm that properly deals with the trade-off between the unbounded number of states and chains. We illustrate the performance of our proposed models in the power disaggregation problem.


IEEE Transactions on Signal Processing | 2017

Poisson Multi-Bernoulli Mapping Using Gibbs Sampling

Maryam Fatemi; Karl Granström; Lennart Svensson; Francisco J. R. Ruiz; Lars Hammarstrand

This paper addresses the mapping problem. Using a conjugate prior form, we derive the exact theoretical batch multiobject posterior density of the map given a set of measurements. The landmarks in the map are modeled as extended objects, and the measurements are described as a Poisson process, conditioned on the map. We use a Poisson process prior on the map and prove that the posterior distribution is a hybrid Poisson, multi-Bernoulli mixture distribution. We devise a Gibbs sampling algorithm to sample from the batch multiobject posterior. The proposed method can handle uncertainties in the data associations and the cardinality of the set of landmarks, and is parallelizable, making it suitable for large-scale problems. The performance of the proposed method is evaluated on synthetic data and is shown to outperform a state-of-the-art method.


PLOS ONE | 2016

Prior Design for Dependent Dirichlet Processes: An Application to Marathon Modeling

Melanie F. Pradier; Francisco J. R. Ruiz; Fernando Pérez-Cruz

This paper presents a novel application of Bayesian nonparametrics (BNP) for marathon data modeling. We make use of two well-known BNP priors, the single-p dependent Dirichlet process and the hierarchical Dirichlet process, in order to address two different problems. First, we study the impact of age, gender and environment on the runners’ performance. We derive a fair grading method that allows direct comparison of runners regardless of their age and gender. Unlike current grading systems, our approach is based not only on top world records, but on the performances of all runners. The presented methodology for comparison of densities can be adopted in many other applications straightforwardly, providing an interesting perspective to build dependent Dirichlet processes. Second, we analyze the running patterns of the marathoners in time, obtaining information that can be valuable for training purposes. We also show that these running patterns can be used to predict finishing time given intermediate interval measurements. We apply our models to New York City, Boston and London marathons.


european signal processing conference | 2015

A Bayesian nonparametric approach for blind multiuser channel estimation

Isabel Valera; Francisco J. R. Ruiz; Lennart Svensson; Fernando Pérez-Cruz

In many modern multiuser communication systems, users are allowed to enter and leave the system at any given time. Thus, the number of active users is an unknown and time-varying parameter, and the performance of the system depends on how accurately this parameter is estimated over time. We address the problem of blind joint channel parameter and data estimation in a multiuser communication channel in which the number of transmitters is not known. For that purpose, we develop a Bayesian nonparametric model based on the Markov Indian buffet process and an inference algorithm that makes use of slice sampling and particle Gibbs with ancestor sampling. Our experimental results show that the proposed approach can effectively recover the data-generating process for a wide range of scenarios.


information theory workshop | 2011

Zero-error codes for the noisy-typewriter channel

Francisco J. R. Ruiz; Fernando Pérez-Cruz

In this paper, we propose nontrivial codes that achieve a non-zero zero-error rate for several odd-letter noisy-typewriter channels. Some of these codes (specifically, those which are defined for a number of letters of the channel of the form 2n + 1) achieve the best-known lower bound on the zero-error capacity. We build the codes using linear codes over rings, as we do not require the multiplicative inverse to build the codes.


bioRxiv | 2018

De novo Gene Signature Identification from Single-Cell RNA-Seq with Hierarchical Poisson Factorization

Hanna Mendes Levitin; Jinzhou Yuan; Yim Ling Cheng; Francisco J. R. Ruiz; Erin C. Bush; Jeffrey N. Bruce; Peter Canoll; Antonio Iavarone; Anna Lasorella; David M. Blei; Peter A. Sims

Common approaches to gene signature discovery in single cell RNA-sequencing (scRNA-seq) depend upon predefined structures like clusters or pseudo-temporal order, require prior normalization, or do not account for the sparsity of single cell data. We present single cell Hierarchical Poisson Factorization (scHPF), a Bayesian factorization method that adapts Hierarchical Poisson Factorization [1] for de novo discovery of both continuous and discrete expression patterns from scRNA-seq. scHPF does not require prior normalization and captures statistical properties of single cell data better than other methods in benchmark datasets. Applied to scRNA-seq of the core and margin of a high-grade glioma, scHPF uncovers marked differences in the abundance of glioma subpopulations across tumor regions and subtle, regionally-associated expression biases within glioma subpopulations. scHFP revealed an expression signature that was spatially biased towards the glioma-infiltrated margins and associated with inferior survival in glioblastoma.


Neural Computation | 2016

Infinite continuous feature model for psychiatric comorbidity analysis

Isabel Valera; Francisco J. R. Ruiz; Pablo M. Olmos; Carlos Blanco; Fernando Pérez-Cruz

We aim at finding the comorbidity patterns of substance abuse, mood and personality disorders using the diagnoses from the National Epidemiologic Survey on Alcohol and Related Conditions database. To this end, we propose a novel Bayesian nonparametric latent feature model for categorical observations, based on the Indian buffet process, in which the latent variables can take values between 0 and 1. The proposed model has several interesting features for modeling psychiatric disorders. First, the latent features might be off, which allows distinguishing between the subjects who suffer a condition and those who do not. Second, the active latent features take positive values, which allows modeling the extent to which the patient has that condition. We also develop a new Markov chain Monte Carlo inference algorithm for our model that makes use of a nested expectation propagation procedure.


Cognitive Information Processing (CIP), 2014 4th International Workshop on | 2014

Infinite factorial unbounded hidden Markov model for blind multiuser channel estimation

Isabel Valera; Francisco J. R. Ruiz; Fernando Pérez-Cruz

Bayesian nonparametric models allow solving estimation and detection problems with an unbounded number of degrees of freedom. In multiuser multiple-input multiple-output (MIMO) communication systems we might not know the number of active users and the channel they face, and assuming maximal scenarios (maximum number of transmitters and maximum channel length) might degrade the receiver performance. In this paper, we propose a Bayesian nonparametric prior and its associated inference algorithm, which is able to detect an unbounded number of users with an unbounded channel length. This generative model provides the dispersive channel model for each user and a probabilistic estimate for each transmitted symbol in a fully blind manner, i.e., without the need of pilot (training) symbols.

Collaboration


Dive into the Francisco J. R. Ruiz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Pérez-Cruz

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lennart Svensson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michalis K. Titsias

Athens University of Economics and Business

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge