Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M. Epstein is active.

Publication


Featured researches published by David M. Epstein.


Cancer Research | 2008

Feedback Mechanisms Promote Cooperativity for Small Molecule Inhibitors of Epidermal and Insulin-Like Growth Factor Receptors

Elizabeth Buck; Alexandra Eyzaguirre; Maryland Rosenfeld-Franklin; Stuart Thomson; Mark J. Mulvihill; Sharon Barr; Eric J. Brown; Mathew O'Connor; Yan Yao; Jonathan A. Pachter; Mark R. Miglarese; David M. Epstein; Kenneth K. Iwata; John D. Haley; Neil W. Gibson; Qun-Sheng Ji

Epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR) can cooperate to regulate tumor growth and survival, and synergistic growth inhibition has been reported for combined blockade of EGFR and IGF-IR. However, in preclinical models, only a subset of tumors exhibit high sensitivity to this combination, highlighting the potential need for patient selection to optimize clinical efficacy. Herein, we have characterized the molecular basis for cooperative growth inhibition upon dual EGFR and IGF-IR blockade and provide biomarkers that seem to differentiate response. We find for epithelial, but not for mesenchymal-like, tumor cells that Akt is controlled cooperatively by EGFR and IGF-IR. This correlates with synergistic apoptosis and growth inhibition in vitro and growth regression in vivo upon combined blockade of both receptors. We identified two molecular aspects contributing to synergy: (a) inhibition of EGFR or IGF-IR individually promotes activation of the reciprocal receptor; (b) inhibition of EGFR-directed mitogen-activated protein kinase (MAPK) shifts regulation of Akt from EGFR toward IGF-IR. Targeting the MAPK pathway through downstream MAPK/extracellular signal-regulated kinase kinase (MEK) antagonism similarly promoted IGF-driven pAkt and synergism with IGF-IR inhibition. Mechanistically, we find that inhibition of the MAPK pathway circumvents a negative feedback loop imposed on the IGF-IR- insulin receptor substrate 1 (IRS-1) signaling complex, a molecular scenario that parallels the negative feedback loop between mTOR-p70S6K and IRS-1 that mediates rapamycin-directed IGF-IR signaling. Collectively, these data show that resistance to inhibition of MEK, mTOR, and EGFR is associated with enhanced IGF-IR-directed Akt signaling, where all affect feedback loops converging at the level of IRS-1.


Clinical & Experimental Metastasis | 2008

Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions

Sharon Barr; Stuart Thomson; Elizabeth Buck; Suzanne Russo; Filippo Petti; Izabela Sujka-Kwok; Alexandra Eyzaguirre; Maryland Rosenfeld-Franklin; Neil W. Gibson; Mark Miglarese; David M. Epstein; Kenneth K. Iwata; John D. Haley

Over 90% of all cancers are carcinomas, malignancies derived from cells of epithelial origin. As carcinomas progress, these tumors may lose epithelial morphology and acquire mesenchymal characteristics which contribute to metastatic potential. An epithelial-to-mesenchymal transition (EMT) similar to the process critical for embryonic development is thought to be an important mechanism for promoting cancer invasion and metastasis. Epithelial-to-mesenchymal transitions have been induced in vitro by transient or unregulated activation of receptor tyrosine kinase signaling pathways, oncogene signaling and disruption of homotypic cell adhesion. These cellular models attempt to mimic the complexity of human carcinomas which respond to autocrine and paracrine signals from both the tumor and its microenvironment. Activation of the epidermal growth factor receptor (EGFR) has been implicated in the neoplastic transformation of solid tumors and overexpression of EGFR has been shown to correlate with poor survival. Notably, epithelial tumor cells have been shown to be significantly more sensitive to EGFR inhibitors than tumor cells which have undergone an EMT-like transition and acquired mesenchymal characteristics, including non-small cell lung (NSCLC), head and neck (HN), bladder, colorectal, pancreas and breast carcinomas. EGFR blockade has also been shown to inhibit cellular migration, suggesting a role for EGFR inhibitors in the control of metastasis. The interaction between EGFR and the multiple signaling nodes which regulate EMT suggest that the combination of an EGFR inhibitor and other molecular targeted agents may offer a novel approach to controlling metastasis.


Clinical & Experimental Metastasis | 2008

Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy

Stuart Thomson; Filippo Petti; Izabela Sujka-Kwok; David M. Epstein; John D. Haley

NSCLC cells with a mesenchymal phenotype have shown a marked reduction in sensitivity to EGFR inhibitors, though the molecular rationale has remained obscure. Here we find that in mesenchymal-like tumor cells both tyrosine phosphorylation of EGFR, ErbB2, and ErbB3 signaling networks and expression of EGFR family ligands were decreased. While chronic activation of EGFR can promote an EMT-like transition, once having occurred EGFR family signaling was attenuated. We investigated the mechanisms by which mesenchymal-like cells bypass EGFR signaling and acquire alternative routes of proliferative and survival signaling. Mesenchymal-like NSCLC cells exhibit aberrant PDGFR and FGFR expression and autocrine signaling through these receptors can activate the MEK-ERK and PI3K pathways. Selective pharmacological inhibition of PDGFR or FGFR receptor tyrosine kinases reduced cell proliferation in mesenchymal-like but not epithelial NSCLC cell lines. A metastable, reversible EMT-like transition in the NSCLC line H358 was achieved by exogenous TGFβ, which served as a model EMT system. The H358/TGFβ cells showed many of the attributes of established mesenchymal-like NSCLC cells including a loss of cell-cell junctions, a loss of EGF-family ligand expression, a loss of ErbB3 expression, increased EGFR-independent Mek-Erk pathway activation and reduced sensitivity to EGFR inhibition. Notably an EMT-dependent acquisition of PDGFR, FGFR and TGFβ receptors in H358/TGFbeta cells was also observed. In H358/TGFbeta cells both PDGFR and FGFR showed functional ligand stimulation of their intrinsic tyrosine kinase activities. The findings of kinase switching and acquired PDGFR and FGFR signaling suggest investigation of new inhibitor combinations to target NSCLC metastases.


Clinical & Experimental Metastasis | 2011

A systems view of epithelial–mesenchymal transition signaling states

Stuart Thomson; Filippo Petti; Izabela Sujka-Kwok; Peter Mercado; James Bean; Melissa Monaghan; Sean L. Seymour; Gretchen M. Argast; David M. Epstein; John D. Haley

AbtractEpithelial–mesenchymal transition (EMT) is an important contributor to the invasion and metastasis of epithelial-derived cancers. While considerable effort has focused in the regulators involved in the transition process, we have focused on consequences of EMT to prosurvival signaling. Changes in distinct metastable and ‘epigentically-fixed’ EMT states were measured by correlation of protein, phosphoprotein, phosphopeptide and RNA transcript abundance. The assembly of 1167 modulated components into functional systems or machines simplified biological understanding and increased prediction confidence highlighting four functional groups: cell adhesion and migration, metabolism, transcription nodes and proliferation/survival networks. A coordinate metabolic reduction in a cluster of 17 free-radical stress pathway components was observed and correlated with reduced glycolytic and increased oxidative phosphorylation enzyme capacity, consistent with reduced cell cycling and reduced need for macromolecular biosynthesis in the mesenchymal state. An attenuation of EGFR autophosphorylation and a switch from autocrine to paracrine-competent EGFR signaling was implicated in the enablement of tumor cell chemotaxis. A similar attenuation of IGF1R, MET and RON signaling with EMT was observed. In contrast, EMT increased prosurvival autocrine IL11/IL6-JAK2-STAT signaling, autocrine fibronectin-integrin α5β1 activation, autocrine Axl/Tyro3/PDGFR/FGFR RTK signaling and autocrine TGFβR signaling. A relatively uniform loss of polarity and cell–cell junction linkages to actin cytoskeleton and intermediate filaments was measured at a systems level. A more heterogeneous gain of ECM remodeling and associated with invasion and migration was observed. Correlation to stem cell, EMT, invasion and metastasis datasets revealed the greatest similarity with normal and cancerous breast stem cell populations, CD49fhi/EpCAM-/lo and CD44hi/CD24lo, respectively.


Molecular Cancer Therapeutics | 2010

Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer.

Elizabeth Buck; Prafulla C. Gokhale; Susan Koujak; Eric J. Brown; Alexandra Eyzaguirre; Nianjun Tao; Maryland Rosenfeld-Franklin; Lorena Lerner; M. Isabel Chiu; Robert Wild; David M. Epstein; Jonathan A. Pachter; Mark R. Miglarese

Insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) and critical activator of the phosphatidylinositol 3-kinase–AKT pathway. IGF-1R is required for oncogenic transformation and tumorigenesis. These observations have spurred anticancer drug discovery and development efforts for both biological and small-molecule IGF-1R inhibitors. The ability for one RTK to compensate for another to maintain tumor cell viability is emerging as a common resistance mechanism to antitumor agents targeting individual RTKs. As IGF-1R is structurally and functionally related to the insulin receptor (IR), we asked whether IR is tumorigenic and whether IR-AKT signaling contributes to resistance to IGF-1R inhibition. Both IGF-1R and IR(A) are tumorigenic in a mouse mammary tumor model. In human tumor cells coexpressing IGF-1R and IR, bidirectional cross talk was observed following either knockdown of IR expression or treatment with a selective anti–IGF-1R antibody, MAB391. MAB391 treatment resulted in a compensatory increase in phospho-IR, which was associated with resistance to inhibition of IRS1 and AKT. In contrast, treatment with OSI-906, a small-molecule dual inhibitor of IGF-1R/IR, resulted in enhanced reduction in phospho-IRS1/phospho-AKT relative to MAB391. Insulin or IGF-2 activated the IR-AKT pathway and decreased sensitivity to MAB391 but not to OSI-906. In tumor cells with an autocrine IGF-2 loop, both OSI-906 and an anti–IGF-2 antibody reduced phospho-IR/phospho-AKT, whereas MAB391 was ineffective. Finally, OSI-906 showed superior efficacy compared with MAB391 in human tumor xenograft models in which both IGF-1R and IR were phosphorylated. Collectively, these data indicate that cotargeting IGF-1R and IR may provide superior antitumor efficacy compared with targeting IGF-1R alone. Mol Cancer Ther; 9(10); 2652–64. ©2010 AACR.


Cancer Research | 2007

Sequential Loss of Tumor Vessel Pericytes and Endothelial Cells after Inhibition of Platelet-Derived Growth Factor B by Selective Aptamer AX102

Barbara Sennino; Beverly L. Falcon; Dilara McCauley; Tom Le; Thomas G. McCauley; Jeffrey Kurz; Amy Haskell; David M. Epstein; Donald M. McDonald

Inhibition of platelet derived growth factor (PDGF) can increase the efficacy of other cancer therapeutics, but the cellular mechanism is incompletely understood. We examined the cellular effects on tumor vasculature of a novel DNA oligonucleotide aptamer (AX102) that selectively binds PDGF-B. Treatment with AX102 led to progressive reduction of pericytes, identified by PDGF receptor beta, NG2, desmin, or alpha-smooth muscle actin immunoreactivity, in Lewis lung carcinomas. The decrease ranged from 35% at 2 days, 63% at 7 days, to 85% at 28 days. Most tumor vessels that lacked pericytes at 7 days subsequently regressed. Overall tumor vascularity decreased 79% over 28 days, without a corresponding decrease in tumor size. Regression of pericytes and endothelial cells led to empty basement membrane sleeves, which were visible at 7 days, but only 54% remained at 28 days. PDGF-B inhibition had a less pronounced effect on pancreatic islet tumors in RIP-Tag2 transgenic mice, where pericytes decreased 47%, vascularity decreased 38%, and basement membrane sleeves decreased 21% over 28 days. Taken together, these findings show that inhibition of PDGF-B signaling can lead to regression of tumor vessels, but the magnitude is tumor specific and does not necessarily retard tumor growth. Loss of pericytes in tumors is an expected direct consequence of PDGF-B blockade, but reduced tumor vascularity is likely to be secondary to pericyte regression.


Molecular Cancer Therapeutics | 2011

Preclinical Characterization of OSI-027, a Potent and Selective Inhibitor of mTORC1 and mTORC2: Distinct from Rapamycin

Shripad V. Bhagwat; Prafulla C. Gokhale; Andrew P. Crew; Andy Cooke; Yan Yao; Christine Mantis; Jennifer Kahler; Jennifer Workman; Mark Bittner; Lorina Dudkin; David M. Epstein; Neil W. Gibson; Robert Wild; Lee D. Arnold; Peter J. Houghton; Jonathan A. Pachter

The phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway is frequently activated in human cancers, and mTOR is a clinically validated target. mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, metabolism, proliferation, and survival. Rapamycin and its analogues partially inhibit mTOR through allosteric binding to mTORC1, but not mTORC2, and have shown clinical utility in certain cancers. Here, we report the preclinical characterization of OSI-027, a selective and potent dual inhibitor of mTORC1 and mTORC2 with biochemical IC50 values of 22 nmol/L and 65 nmol/L, respectively. OSI-027 shows more than 100-fold selectivity for mTOR relative to PI3Kα, PI3Kβ, PI3Kγ, and DNA-PK. OSI-027 inhibits phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1 as well as the mTORC2 substrate AKT in diverse cancer models in vitro and in vivo. OSI-027 and OXA-01 (close analogue of OSI-027) potently inhibit proliferation of several rapamycin-sensitive and -insensitive nonengineered and engineered cancer cell lines and also, induce cell death in tumor cell lines with activated PI3K–AKT signaling. OSI-027 shows concentration-dependent pharmacodynamic effects on phosphorylation of 4E-BP1 and AKT in tumor tissue with resulting tumor growth inhibition. OSI-027 shows robust antitumor activity in several different human xenograft models representing various histologies. Furthermore, in COLO 205 and GEO colon cancer xenograft models, OSI-027 shows superior efficacy compared with rapamycin. Our results further support the important role of mTOR as a driver of tumor growth and establish OSI-027 as a potent anticancer agent. OSI-027 is currently in phase I clinical trials in cancer patients. Mol Cancer Ther; 10(8); 1394–406. ©2011 AACR.


Cancer Research | 2011

Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors

Beverly L. Falcon; Sharon Barr; Prafulla C. Gokhale; Jeyling Chou; Jennifer Fogarty; Philippe Depeille; Mark R. Miglarese; David M. Epstein; Donald M. McDonald

The mammalian target of rapamycin (mTOR) pathway is implicated widely in cancer pathophysiology. Dual inhibition of the mTOR kinase complexes mTORC1 and mTORC2 decreases tumor xenograft growth in vivo and VEGF secretion in vitro, but the relationship between these two effects are unclear. In this study, we examined the effects of mTORC1/2 dual inhibition on VEGF production, tumor angiogenesis, vascular regression, and vascular regrowth, and we compared the effects of dual inhibition to mTORC1 inhibition alone. ATP-competitive inhibitors OSI-027 and OXA-01 targeted both mTORC1 and mTORC2 signaling in vitro and in vivo, unlike rapamycin that only inhibited mTORC1 signaling. OXA-01 reduced VEGF production in tumors in a manner associated with decreased vessel sprouting but little vascular regression. In contrast, rapamycin exerted less effect on tumoral production of VEGF. Treatment with the selective VEGFR inhibitor OSI-930 reduced vessel sprouting and caused substantial vascular regression in tumors. However, following discontinuation of OSI-930 administration tumor regrowth could be slowed by OXA-01 treatment. Combining dual inhibitors of mTORC1 and mTORC2 with a VEGFR2 inhibitor decreased tumor growth more than either inhibitor alone. Together, these results indicate that dual inhibition of mTORC1/2 exerts antiangiogenic and antitumoral effects that are even more efficacious when combined with a VEGFR antagonist.


Cancer Research | 2010

AACR Special Conference on Epithelial-Mesenchymal Transition and Cancer Progression and Treatment

Evanthia T. Roussos; Zuzana Keckesova; John D. Haley; David M. Epstein; Robert A. Weinberg; John Condeelis

Epithelial-mesenchymal transition (EMT) is a developmental program implicated in cancer progression and was the subject of the 2010 AACR meeting on the topic of EMT and Cancer Progression and Treatment held on February 28 to March 2 in Arlington, Virginia. A review of the involvement of EMT in gastrulation, organogenesis, carcinogenesis, and metastatic progression elucidated the overlap of EMT in these physiologic and pathologic conditions. Both novel and traditional markers of cells undergoing EMT were discussed and compared with features used to define cancer stem cells. Importantly, these defining characteristics of cells undergoing EMT were discussed in the context of therapeutic and prognostic developments.


Journal of Cellular Physiology | 2006

Intraocular injection of an aptamer that binds PDGF-B : A potential treatment for proliferative retinopathies

Hideo Akiyama; Shu Kachi; Raquel Lima e Silva; Naoyasu Umeda; Sean F. Hackett; Dilara McCauley; Thomas G. McCauley; Anna J. Zoltoski; David M. Epstein; Peter A. Campochiaro

Platelet‐derived growth factor‐B (PDGF‐B) has been implicated in the pathogenesis of proliferative retinopathies and other scarring disorders in the eye. In this study, we sought to test the therapeutic potential of an aptamer that selectively binds PDGF‐B, ARC126, and its PEGylated derivative, ARC127. Both ARC126 and ARC127 blocked PDGF‐B‐induced proliferation of cultured fibroblasts with an IC50 of 4 nM. Pharmacokinetic studies in rabbits showed similar peak vitreous concentrations of approximately 110 µM after intravitreous injection of 1 mg of either ARC126 or ARC127, but the terminal half‐life was longer for ARC127 (98 versus 43 h). Efficacy was tested in rho/PDGF‐B transgenic mice that express PDGF‐B in photoreceptors and develop severe proliferative retinopathy resulting in retinal detachment. Compared to eyes injected with 20 µg of scrambled aptamer in which five of six developed detachments (three total and two partial), eyes injected with ARC126 (no detachment in five of six and one partial detachment), or ARC127 (no detachment in six of six) had significantly fewer retinal detachments. They also showed a significant reduction in epiretinal membrane formation. These data demonstrate that a single intravitreous injection of an aptamer that specifically binds PDGF‐B is able to significantly reduce epiretinal membrane formation and retinal detachment in rho/PDGF‐B mice. These striking effects in an aggressive model of proliferative retinopathy suggest that ARC126 and ARC127 should be considered for treatment of diseases in which PDGF‐B has been implicated, including ischemic retinopathies such as proliferative diabetic retinopathy, proliferative vitreoretinopathy (PVR), and choroidal neovascularization. J. Cell. Physiol. 207: 407–412, 2006.

Collaboration


Dive into the David M. Epstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge