Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark J. Mulvihill is active.

Publication


Featured researches published by Mark J. Mulvihill.


Cancer Research | 2008

Feedback Mechanisms Promote Cooperativity for Small Molecule Inhibitors of Epidermal and Insulin-Like Growth Factor Receptors

Elizabeth Buck; Alexandra Eyzaguirre; Maryland Rosenfeld-Franklin; Stuart Thomson; Mark J. Mulvihill; Sharon Barr; Eric J. Brown; Mathew O'Connor; Yan Yao; Jonathan A. Pachter; Mark R. Miglarese; David M. Epstein; Kenneth K. Iwata; John D. Haley; Neil W. Gibson; Qun-Sheng Ji

Epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR) can cooperate to regulate tumor growth and survival, and synergistic growth inhibition has been reported for combined blockade of EGFR and IGF-IR. However, in preclinical models, only a subset of tumors exhibit high sensitivity to this combination, highlighting the potential need for patient selection to optimize clinical efficacy. Herein, we have characterized the molecular basis for cooperative growth inhibition upon dual EGFR and IGF-IR blockade and provide biomarkers that seem to differentiate response. We find for epithelial, but not for mesenchymal-like, tumor cells that Akt is controlled cooperatively by EGFR and IGF-IR. This correlates with synergistic apoptosis and growth inhibition in vitro and growth regression in vivo upon combined blockade of both receptors. We identified two molecular aspects contributing to synergy: (a) inhibition of EGFR or IGF-IR individually promotes activation of the reciprocal receptor; (b) inhibition of EGFR-directed mitogen-activated protein kinase (MAPK) shifts regulation of Akt from EGFR toward IGF-IR. Targeting the MAPK pathway through downstream MAPK/extracellular signal-regulated kinase kinase (MEK) antagonism similarly promoted IGF-driven pAkt and synergism with IGF-IR inhibition. Mechanistically, we find that inhibition of the MAPK pathway circumvents a negative feedback loop imposed on the IGF-IR- insulin receptor substrate 1 (IRS-1) signaling complex, a molecular scenario that parallels the negative feedback loop between mTOR-p70S6K and IRS-1 that mediates rapamycin-directed IGF-IR signaling. Collectively, these data show that resistance to inhibition of MEK, mTOR, and EGFR is associated with enhanced IGF-IR-directed Akt signaling, where all affect feedback loops converging at the level of IRS-1.


Future Medicinal Chemistry | 2009

Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor

Mark J. Mulvihill; Andrew Cooke; Maryland Rosenfeld-Franklin; Elizabeth Buck; Ken Foreman; Darla Landfair; Matthew O’Connor; Caroline Pirritt; Yingchaun Sun; Yan Yao; Lee D. Arnold; Neil W. Gibson; Qun-Sheng Ji

BACKGROUND The IGF-1 receptor (IGF-1R) has been implicated in the promotion of tumorigenesis, metastasis and resistance to cancer therapies. Therefore, this receptor has become a major focus for the development of anticancer agents. RESULTS Our lead optimization efforts that blended structure-based design and empirical medicinal chemistry led to the discovery of OSI-906, a novel small-molecule dual IGF-1R/insulin receptor (IR) kinase inhibitor. OSI-906 potently and selectively inhibits autophosphorylation of both human IGF-1R and IR, displays in vitro antiproliferative effects in a variety of tumor cell lines and shows robust in vivo anti-tumor efficacy in an IGF-1R-driven xenograft model when administered orally once daily. CONCLUSION OSI-906 is a novel, potent, selective and orally bioavailable dual IGF-1R/IR kinase inhibitor with favorable preclinical drug-like properties, which has demonstrated in vivo efficacy in tumor models and is currently in clinical testing.


Molecular Cancer Therapeutics | 2007

A novel, potent, and selective insulin-like growth factor-I receptor kinase inhibitor blocks insulin-like growth factor-I receptor signaling in vitro and inhibits insulin-like growth factor-I receptor–dependent tumor growth in vivo

Qun-Sheng Ji; Mark J. Mulvihill; Maryland Rosenfeld-Franklin; Andrew Cooke; Lixin Feng; Gilda Mak; Matthew O'Connor; Yan Yao; Caroline Pirritt; Elizabeth Buck; Alexandra Eyzaguirre; Lee D. Arnold; Neil W. Gibson; Jonathan A. Pachter

Insulin-like growth factor-I receptor (IGF-IR) and its ligands, IGF-I and IGF-II, are up-regulated in a variety of human cancers. In tumors, such as colorectal, non–small cell lung, ovarian, and pediatric cancers, which may drive their own growth and survival through autocrine IGF-II expression, the role of IGF-IR is especially critical. Here, we present a novel small-molecule IGF-IR kinase inhibitor, cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1,5-a]pyrazin-8-ylamine (PQIP), which displayed a cellular IC50 of 19 nmol/L for inhibition of ligand-dependent autophosphorylation of human IGF-IR with 14-fold cellular selectivity relative to the human insulin receptor. PQIP showed minimal activity against a panel of 32 other protein kinases. It also abolished the ligand-induced activation of downstream phosphorylated AKT and phosphorylated extracellular signal-regulated kinase 1/2 in both IGF-IR transfectant cells and a GEO human colorectal cancer cell line. Analysis of GEO cells revealed a significant level of both phosphorylated IGF-IR and IGF-II expression. Furthermore, inactivation of IGF-II in conditioned GEO culture medium by a neutralizing antibody diminished IGF-IR activation, indicating the presence of a functional IGF-II/IGF-IR autocrine loop in GEO cells. Once daily oral dosing of PQIP induced robust antitumor efficacy in GEO xenografts. The antitumor efficacy correlated with the degree and duration of inhibition of tumor IGF-IR phosphorylation in vivo by this compound. Moreover, when mice were treated for 3 days with a dose of PQIP that maximally inhibited tumor growth, only minor changes in blood glucose were observed. Thus, PQIP represents a potent and selective IGF-IR kinase inhibitor that is especially efficacious in an IGF-II–driven human tumor model. [Mol Cancer Ther 2007;6(8):2158–67]


The EMBO Journal | 2008

Small‐molecule inhibition and activation‐loop trans‐phosphorylation of the IGF1 receptor

Jinhua Wu; Wanqing Li; Barbara P. Craddock; Kenneth Foreman; Mark J. Mulvihill; Qun-Sheng Ji; W. Todd Miller; Stevan R. Hubbard

The insulin‐like growth factor‐1 receptor (IGF1R) is a receptor tyrosine kinase (RTK) that has a critical role in mitogenic signalling during embryogenesis and an antiapoptotic role in the survival and progression of many human tumours. Here, we present the crystal structure of the tyrosine kinase domain of IGF1R (IGF1RK), in its unphosphorylated state, in complex with a novel compound, cis‐3‐[3‐(4‐methyl‐piperazin‐l‐yl)‐cyclobutyl]‐1‐(2‐phenyl‐quinolin‐7‐yl)‐imidazo[1,5‐a]pyrazin‐8‐ylamine (PQIP), which we show is a potent inhibitor of both the unphosphorylated (basal) and phosphorylated (activated) states of the kinase. PQIP interacts with residues in the ATP‐binding pocket and in the activation loop, which confers specificity for IGF1RK and the highly related insulin receptor (IR) kinase. In this crystal structure, the IGF1RK active site is occupied by Tyr1135 from the activation loop of an symmetry (two‐fold)‐related molecule. This dimeric arrangement affords, for the first time, a visualization of the initial trans‐phosphorylation event in the activation loop of an RTK, and provides a molecular rationale for a naturally occurring mutation in the activation loop of the IR that causes type II diabetes mellitus.


Organic and Biomolecular Chemistry | 2007

A highly effective one-pot synthesis of quinolines from o-nitroarylcarbaldehydes.

An-Hu Li; Eilaf Ahmed; Xin Chen; Matthew Cox; Andrew P. Crew; Hanqing Dong; Meizhong Jin; Lifu Ma; Bijoy Panicker; Kam W. Siu; Arno G. Steinig; Kathryn M. Stolz; Paula A. R. Tavares; Brian Volk; Qinghua Weng; Doug Werner; Mark J. Mulvihill

A highly effective one-pot Friedländer quinoline synthesis using inexpensive reagents has been developed. o-Nitroarylcarbaldehydes were reduced to o-aminoarylcarbaldehydes with iron in the presence of catalytic HCl (aq.) and subsequently condensed in situ with aldehydes or ketones to form mono- or di-substituted quinolines in high yields (66-100%).


Expert Opinion on Investigational Drugs | 2011

Small molecule inhibitors of the IGF-1R/IR axis for the treatment of cancer

Elizabeth Buck; Mark J. Mulvihill

Introduction: The IGF-1 receptor (IGF-1R) is a receptor tyrosine kinase and is well established as a key regulator of tumor cell growth and survival. There is also a growing body of data to support a role for the structurally and functionally related insulin receptor (IR) in human cancer. Bidirectional crosstalk between IGF-1R and IR is observed, where specific inhibition of either receptor confers a compensatory increase in the activity for the reciprocal receptor, therefore dual inhibition of both IGF-1R and IR may be important for optimal efficacy. The importance of IGF-1R and IR as targets in cancer is further underscored by their contribution to resistance against both cytotoxic and molecularly targeted anti-cancer therapeutics. Currently, both IGF-1R-neutralizing antibodies and small-molecule tyrosine kinase inhibitors of IGF-1R/IR are in clinical development. Areas covered: The importance of IGF-1R and IR as cancer targets and how IGF-1R/IR inhibitors may sensitize tumor cells to the anti-proliferative and pro-apoptotic effects of other anti-tumor agents. The potential advantages of small molecule IGF-1R/IR inhibitors compared with IGF-1R-specific neutralizing antibodies, and the characteristics of small-molecule IGF-1R inhibitors that have entered clinical development. Expert opinion: Because of compensatory crosstalk between IGF-1R and IR, dual IGF-1R and IR tyrosine kinase inhibitors may have superior anti-tumor activity compared to anti-IGF-1R specific antibodies. The clinical success for IGF-1R/IR inhibitors may ultimately be dependent upon our ability to correctly administer these agents to the right niche patient subpopulation using single agent therapy, when appropriate, or using the right combination therapy.


Recent results in cancer research | 2007

Inhibition of the IGF-I Receptor for Treatment of Cancer. Kinase Inhibitors and Monoclonal Antibodies as Alternative Approaches

Yan Wang; Qun-Sheng Ji; Mark J. Mulvihill; Jonathan A. Pachter

Insulin-like growth factor (IGF) signaling plays a critical role in the growth and differentiation of many tissues, particularly in prenatal growth and puberty. The IGF axis is also implicated in various pathophysiological conditions, and is believed to play a crucial role in tumorigenesis (Pollak et al. 2004).


Bioorganic & Medicinal Chemistry Letters | 2011

Imidazo[1,5-a]pyrazines: orally efficacious inhibitors of mTORC1 and mTORC2.

Andrew P. Crew; Shripad V. Bhagwat; Hanqing Dong; Mark Bittner; Anna Chan; Xin Chen; Heather Coate; Andrew Cooke; Prafulla C. Gokhale; Ayako Honda; Meizhong Jin; Jennifer Kahler; Christine Mantis; Mark J. Mulvihill; Paula A. Tavares-Greco; Brian Volk; Jing Wang; Douglas S. Werner; Lee D. Arnold; Jonathan A. Pachter; Robert Wild; Neil W. Gibson

The discovery and optimization of a series of imidazo[1,5-a]pyrazine inhibitors of mTOR is described. HTS hits were optimized for potency, selectivity and metabolic stability to provide the orally bioavailable proof of concept compound 4c that demonstrated target inhibition in vivo and concomitant inhibition of tumor growth in an MDA-MB-231 xenograft model.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of 7-aminofuro[2,3-c]pyridine inhibitors of TAK1: Optimization of kinase selectivity and pharmacokinetics.

Keith R. Hornberger; Xin Chen; Andrew P. Crew; Andrew Kleinberg; Lifu Ma; Mark J. Mulvihill; Jing Wang; Victoria L. Wilde; Mark Albertella; Mark Bittner; Andrew Cooke; Salam Kadhim; Jennifer Kahler; Paul Maresca; Earl May; Peter Meyn; Darlene Romashko; Brianna Tokar; Roy Turton

The kinase selectivity and pharmacokinetic optimization of a series of 7-aminofuro[2,3-c]pyridine inhibitors of TAK1 is described. The intersection of insights from molecular modeling, computational prediction of metabolic sites, and in vitro metabolite identification studies resulted in a simple and unique solution to both of these problems. These efforts culminated in the discovery of compound 13a, a potent, relatively selective inhibitor of TAK1 with good pharmacokinetic properties in mice, which was active in an in vivo model of ovarian cancer.


Biochemistry | 2010

The Crystal Structure of a Constitutively Active Mutant RON Kinase Suggests an Intramolecular Autophosphorylation Hypothesis

Jing Wang; Stefan Steinbacher; Martin Augustin; Patrick Schreiner; David M. Epstein; Mark J. Mulvihill; Andrew P. Crew

A complex of RON(M1254T) with AMP-PNP and Mg(2+) reveals a substratelike positioning of Tyr1238 as well as likely catalysis-competent placement of the AMP-PNP and Mg(2+) components and indicates a tendency for cis phosphorylation. The structure shows how the oncogenic mutation may cause the constitutive activation and suggests a mechanistic hypothesis for the autophosphorylation of receptor tyrosine kinases.

Collaboration


Dive into the Mark J. Mulvihill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge