Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M. Lee is active.

Publication


Featured researches published by David M. Lee.


Nature Genetics | 2007

Two independent alleles at 6q23 associated with risk of rheumatoid arthritis

Robert M. Plenge; Chris Cotsapas; Leela Davies; Alkes L. Price; Paul I. W. de Bakker; Julian Maller; Itsik Pe'er; Noël P. Burtt; Brendan Blumenstiel; Matt DeFelice; Melissa Parkin; Rachel Barry; Wendy Winslow; Claire Healy; Robert R. Graham; Benjamin M. Neale; Elena Izmailova; Ronenn Roubenoff; Alex Parker; Roberta Glass; Elizabeth W. Karlson; Nancy E. Maher; David A. Hafler; David M. Lee; Michael F. Seldin; Elaine F. Remmers; Annette Lee; Leonid Padyukov; Lars Alfredsson; Jonathan S. Coblyn

To identify susceptibility alleles associated with rheumatoid arthritis, we genotyped 397 individuals with rheumatoid arthritis for 116,204 SNPs and carried out an association analysis in comparison to publicly available genotype data for 1,211 related individuals from the Framingham Heart Study. After evaluating and adjusting for technical and population biases, we identified a SNP at 6q23 (rs10499194, ∼150 kb from TNFAIP3 and OLIG3) that was reproducibly associated with rheumatoid arthritis both in the genome-wide association (GWA) scan and in 5,541 additional case-control samples (P = 10−3, GWA scan; P < 10−6, replication; P = 10−9, combined). In a concurrent study, the Wellcome Trust Case Control Consortium (WTCCC) has reported strong association of rheumatoid arthritis susceptibility to a different SNP located 3.8 kb from rs10499194 (rs6920220; P = 5 × 10−6 in WTCCC). We show that these two SNP associations are statistically independent, are each reproducible in the comparison of our data and WTCCC data, and define risk and protective haplotypes for rheumatoid arthritis at 6q23.


Nature Medicine | 2011

Identification of a central role for complement in osteoarthritis

Qian Wang; Andrew L. Rozelle; Christin M. Lepus; Carla R. Scanzello; Jason Jungsik Song; D. Meegan Larsen; James F. Crish; Gurkan Bebek; Susan Y. Ritter; Tamsin M. Lindstrom; Inyong Hwang; Heidi H. Wong; Leonardo Punzi; Angelo Encarnacion; Mehrdad Shamloo; Stuart B. Goodman; Tony Wyss-Coray; Steven R. Goldring; Nirmal K. Banda; Joshua M. Thurman; Reuben Gobezie; Mary K. Crow; V. Michael Holers; David M. Lee; William H. Robinson

Osteoarthritis, characterized by the breakdown of articular cartilage in synovial joints, has long been viewed as the result of wear and tear. Although low-grade inflammation is detected in osteoarthritis, its role is unclear. Here we identify a central role for the inflammatory complement system in the pathogenesis of osteoarthritis. Through proteomic and transcriptomic analyses of synovial fluids and membranes from individuals with osteoarthritis, we find that expression and activation of complement is abnormally high in human osteoarthritic joints. Using mice genetically deficient in complement component 5 (C5), C6 or the complement regulatory protein CD59a, we show that complement, specifically, the membrane attack complex (MAC)-mediated arm of complement, is crucial to the development of arthritis in three different mouse models of osteoarthritis. Pharmacological modulation of complement in wild-type mice confirmed the results obtained with genetically deficient mice. Expression of inflammatory and degradative molecules was lower in chondrocytes from destabilized joints from C5-deficient mice than C5-sufficient mice, and MAC induced production of these molecules in cultured chondrocytes. Further, MAC colocalized with matrix metalloprotease 13 (MMP13) and with activated extracellular signal-regulated kinase (ERK) around chondrocytes in human osteoarthritic cartilage. Our findings indicate that dysregulation of complement in synovial joints has a key role in the pathogenesis of osteoarthritis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Mast cells are an essential hematopoietic component for polyp development

Elias Gounaris; Susan E. Erdman; Clifford Restaino; Michael F. Gurish; Daniel S. Friend; Fotini Gounari; David M. Lee; Guoying Zhang; Jonathan N. Glickman; Kichul Shin; Varada P. Rao; Theofilos Poutahidis; Ralph Weissleder; Kelly M. McNagny; Khashayarsha Khazaie

It is generally agreed that most colon cancers develop from adenomatous polyps, and it is this fact on which screening strategies are based. Although there is overwhelming evidence to link intrinsic genetic lesions with the formation of these preneoplastic lesions, recent data suggest that the tumor stromal environment also plays an essential role in this disease. In particular, it has been suggested that CD34+ immature myeloid precursor cells are required for tumor development and invasion. Here we have used mice conditional for the stabilization of β-catenin or defective for the adenomatous polyposis coli (APC) gene to reinvestigated the identity and importance of tumor-infiltrating hematopoietic cells in polyposis. We show that, from the onset, polyps are infiltrated with proinflammatory mast cells (MC) and their precursors. Depletion of MC either pharmacologically or through the generation of chimeric mice with genetic lesions in MC development leads to a profound remission of existing polyps. Our data suggest that MC are an essential hematopoietic component for preneoplastic polyp development and are a novel target for therapeutic intervention.


Journal of Clinical Investigation | 2006

Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis

Ricardo T. Paniagua; Orr Sharpe; Peggy P. Ho; Steven M. Chan; Anna Chang; John P. Higgins; Beren Tomooka; Fiona M. Thomas; Jason Jungsik Song; Stuart B. Goodman; David M. Lee; Mark C. Genovese; Paul J. Utz; Lawrence Steinman; William H. Robinson

Tyrosine kinases play a central role in the activation of signal transduction pathways and cellular responses that mediate the pathogenesis of rheumatoid arthritis. Imatinib mesylate (imatinib) is a tyrosine kinase inhibitor developed to treat Bcr/Abl-expressing leukemias and subsequently found to treat c-Kit-expressing gastrointestinal stromal tumors. We demonstrate that imatinib potently prevents and treats murine collagen-induced arthritis (CIA). We further show that micromolar concentrations of imatinib abrogate multiple signal transduction pathways implicated in RA pathogenesis, including mast cell c-Kit signaling and TNF-alpha release, macrophage c-Fms activation and cytokine production, and fibroblast PDGFR signaling and proliferation. In our studies, imatinib attenuated PDGFR signaling in fibroblast-like synoviocytes (FLSs) and TNF-alpha production in synovial fluid mononuclear cells (SFMCs) derived from human RA patients. Imatinib-mediated inhibition of a spectrum of signal transduction pathways and the downstream pathogenic cellular responses may provide a powerful approach to treat RA and other inflammatory diseases.


Annals of the Rheumatic Diseases | 2013

Effect of IL-17A blockade with secukinumab in autoimmune diseases

Dhavalkumar D. Patel; David M. Lee; Frank Kolbinger; Christian Antoni

Genetic studies and correlative expression data in diseased tissues have pointed to the role of interleukin (IL)-17 and Th17 cells in the pathogenesis of autoimmune disorders such as psoriasis, inflammatory bowel disease and seronegative spondyloarthropathies. Th17 cells are known to produce the proinflammatory cytokine IL-17A as well as other effector cytokines, including IL-17F and IL-22. Recent research has demonstrated that IL-17A is also expressed by multiple lineages of the innate immune system, including mast cells, neutrophils, dendritic cells, γδ-T cells, macrophages and natural killer cells. It can thus be expected that the inhibition of IL-17A as a therapeutic target in autoimmune disease would exert different physiological effects than the suppression of Th17 cell activity. Early clinical data are now available on secukinumab (AIN457), a recombinant, highly selective, fully human monoclonal anti-IL-17A antibody of the IgG1/κ isotype, enabling a preliminary assessment of the effects of IL-17A inhibition in multiple autoimmune diseases. Rapid and sustained symptom reductions in psoriasis, rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis have been observed in secukinumab-treated patients, with no overt safety signals. In conjunction with studies using the humanised anti-IL-17A monoclonal antibody (mAb) ixekizumab (LY2439821) and the fully human anti-IL-17RA mAb brodalumab (AMG 827), the findings on secukinumab provide evidence for the role of IL-17A in the pathophysiology of autoimmune disease and suggest the potential value of targeting this cytokine.


Nature Immunology | 2006

Particularities of the vasculature can promote the organ specificity of autoimmune attack

Bryce A. Binstadt; Pratik Patel; Herlen Alencar; Peter Nigrovic; David M. Lee; Umar Mahmood; Ralph Weissleder; Diane Mathis; Christophe Benoist

How certain autoimmune diseases target specific organs remains obscure. In the K/BxN arthritis model, autoantibodies to a ubiquitous antigen elicit joint-restricted pathology. Here we have used intravital imaging to demonstrate that transfer of arthritogenic antibodies caused macromolecular vasopermeability localized to sites destined to develop arthritis, augmenting its severity. Vasopermeability depended on mast cells, neutrophils and FcγRIII but not complement, tumor necrosis factor or interleukin 1. Unexpectedly, radioresistant FcRγ-expressing cells in an organ distant from the joint were required. Histamine and serotonin were critical, and systemic administration of these vasoactive amines recapitulated the joint localization of immune complex–triggered vasopermeability. We propose that regionally distinct vascular properties interface with immune effector pathways to foster organ-specific autoimmune damage, perhaps explaining why arthritis accompanies many human infectious and autoimmune disorders.* Note: In the version of this article initially published online, the end of the third sentence of the second subsection of Results is incorrect. The sentence should read “Intravenous administration of preaggregated normal mouse IgG elicited an increase in joint-localized vasopermeability very similar to that induced by the administration of arthritogenic serum (Fig. 2b and data not shown).” Also, the final acknowledgement is incorrect; it should read “… and by the National Institute of Diabetes and Digestive and Kidney Diseases–supported Diabetes and Endocrinology Research Center cores of the Joslin Diabetes Center.” The errors have been corrected for the HTML and print versions of the article.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Mast cells contribute to initiation of autoantibody-mediated arthritis via IL-1

Peter Nigrovic; Bryce A. Binstadt; Paul A. Monach; Alyssa Johnsen; Michael F. Gurish; Yoichiro Iwakura; Christophe Benoist; Diane Mathis; David M. Lee

Mast cells are immune sentinels that participate in the defense against bacteria and parasites. Resident within the joint, mast cells become activated in human rheumatoid arthritis and are implicated in the pathogenesis of experimental murine synovitis. However, their arthritogenic role remains undefined. Using a model of autoantibody-induced arthritis, we show that mast cells contribute to the initiation of inflammation within the joint by elaboration of IL-1. Mast cells become activated to produce this cytokine via the IgG immune complex receptor FcγRIII. Interestingly, mast cells become dispensable for the perpetuation of arthritis after delivery of IL-1, highlighting the contribution of this lineage to arthritis induction. These findings illuminate a mechanism by which mast cells can participate in the pathogenesis of autoimmune inflammatory arthritis and provide insights of potential relevance to human rheumatoid arthritis.


Journal of Immunology | 2009

Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes.

Kichul Shin; Peter Nigrovic; James F. Crish; Eric Boilard; H. Patrick McNeil; Katherine Larabee; Roberto Adachi; Michael F. Gurish; Reuben Gobezie; Richard L. Stevens; David M. Lee

Although mast cells (MCs) often are abundant in the synovial tissues of patients with rheumatoid arthritis, the contribution of MCs to joint inflammation and cartilage loss remains poorly understood. MC-restricted tryptase/heparin complexes have proinflammatory activity, and significant amounts of human tryptase β (hTryptase-β) are present in rheumatoid arthritis synovial fluid. Mouse MC protease-6 (mMCP-6) is the ortholog of hTryptase-β, and this serine protease is abundant in the synovium of arthritic mice. We now report that C57BL/6 (B6) mice lacking their tryptase/heparin complexes have attenuated arthritic responses, with mMCP-6 as the dominant tryptase responsible for augmenting neutrophil infiltration in the K/BxN mouse serum-transfer arthritis model. While inflammation in this experimental arthritis model was not dependent on protease-activated receptor-2, it was dependent on the chemokine receptor CXCR2. In support of the latter data, exposure of synovial fibroblasts to hTryptase-β/heparin or mMCP-6/heparin complexes resulted in expression of the neutrophil chemotactic factors CXCL1/KC, CXCL5/LIX, and CXCL8/IL-8. Our proteomics, histochemistry, and immunohistochemistry data also revealed substantial loss of cartilage-derived aggrecan proteoglycans in the arthritic joints of wild-type B6 mice but not mMCP-6-null B6 mice. These observations demonstrate the functional contribution of MC-restricted tryptase/heparin complexes in the K/BxN mouse arthritis model and connect our mouse findings with rheumatoid arthritis pathophysiology.


Arthritis Research & Therapy | 2004

Mast cells in inflammatory arthritis

Peter Nigrovic; David M. Lee

Mast cells are present in limited numbers in normal human synovium, but in rheumatoid arthritis and other inflammatory joint diseases this population can expand to constitute 5% or more of all synovial cells. Recent investigations in a murine model have demonstrated that mast cells can have a critical role in the generation of inflammation within the joint. This finding highlights the results of more than 20 years of research indicating that mast cells are frequent participants in non-allergic immune responses as well as in allergy. Equipped with a diversity of surface receptors and effector capabilities, mast cells are sentinels of the immune system, detecting and delivering a first response to invading bacteria and other insults. Accumulating within inflamed tissues, mast cells produce cytokines and other mediators that may contribute vitally to ongoing inflammation. Here we review some of the non-allergic functions of mast cells and focus on the potential role of these cells in murine and human inflammatory arthritis.


Embo Molecular Medicine | 2013

The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle‐associated immune complexes

Nathalie Cloutier; S. M. Tan; Luc H. Boudreau; Catriona Cramb; Roopashree Subbaiah; Lauren J. Lahey; Alexandra Albert; Ruslan Shnayder; Reuben Gobezie; Peter Nigrovic; Richard W. Farndale; William H. Robinson; Alain Brisson; David M. Lee; Eric Boilard

Immunoglobulins, antigens and complement can assemble to form immune complexes (IC). ICs can be detrimental as they propagate inflammation in autoimmune diseases. Like ICs, submicron extracellular vesicles termed microparticles (MP) are present in the synovial fluid from patients affected with autoimmune arthritis. We examined MPs in rheumatoid arthritis (RA) using high sensitivity flow cytometry and electron microscopy. We find that the MPs in RA synovial fluid are highly heterogeneous in size. The observed larger MPs were in fact MP‐containing ICs (mpICs) and account for the majority of the detectable ICs. These mpICs frequently express the integrin CD41, consistent with platelet origin. Despite expression of the Fc receptor FcγRIIa by platelet‐derived MPs, we find that the mpICs form independently of this receptor. Rather, mpICs display autoantigens vimentin and fibrinogen, and recognition of these targets by anti‐citrullinated peptide antibodies contributes to the production of mpICs. Functionally, platelet mpICs are highly pro‐inflammatory, eliciting leukotriene production by neutrophils. Taken together, our data suggest a unique role for platelet MPs as autoantigen‐expressing elements capable of perpetuating formation of inflammatory ICs.

Collaboration


Dive into the David M. Lee's collaboration.

Top Co-Authors

Avatar

Peter Nigrovic

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Eric Boilard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Kichul Shin

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Mei Chen

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Michael B. Brenner

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Michael F. Gurish

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Reuben Gobezie

University Hospitals of Cleveland

View shared research outputs
Top Co-Authors

Avatar

Roberto Adachi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge