Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M. MacAlpine is active.

Publication


Featured researches published by David M. MacAlpine.


Science | 2010

Identification of functional elements and regulatory circuits by Drosophila modENCODE

Sushmita Roy; Jason Ernst; Peter V. Kharchenko; Pouya Kheradpour; Nicolas Nègre; Matthew L. Eaton; Jane M. Landolin; Christopher A. Bristow; Lijia Ma; Michael F. Lin; Stefan Washietl; Bradley I. Arshinoff; Ferhat Ay; Patrick E. Meyer; Nicolas Robine; Nicole L. Washington; Luisa Di Stefano; Eugene Berezikov; Christopher D. Brown; Rogerio Candeias; Joseph W. Carlson; Adrian Carr; Irwin Jungreis; Daniel Marbach; Rachel Sealfon; Michael Y. Tolstorukov; Sebastian Will; Artyom A. Alekseyenko; Carlo G. Artieri; Benjamin W. Booth

From Genome to Regulatory Networks For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by Blaxter). In this vein, Gerstein et al. (p. 1775) summarize for the Caenorhabditis elegans genome, and The modENCODE Consortium (p. 1787) summarize for the Drosophila melanogaster genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. The Drosophila modENCODE project demonstrates the functional regulatory network of flies. To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.


Nature | 2009

Unlocking the secrets of the genome

Susan E. Celniker; Laura A L Dillon; Mark Gerstein; Kristin C. Gunsalus; Steven Henikoff; Gary H. Karpen; Manolis Kellis; Eric C. Lai; Jason D. Lieb; David M. MacAlpine; Gos Micklem; Fabio Piano; Michael Snyder; Lincoln Stein; Kevin P. White; Robert H. Waterston

Despite the successes of genomics, little is known about how genetic information produces complex organisms. A look at the crucial functional elements of fly and worm genomes could change that. The National Human Genome Research Institutes modENCODE project (the model organism ENCyclopedia Of DNA Elements) was set up in 2007 with the goal of identifying all the sequence-based functional elements in the genomes of two important experimental organisms, Caenorhabditis elegans and Drosophila melanogaster. Armed with modENCODE data, geneticists will be able to undertake the comprehensive molecular studies of regulatory networks that hold the key to how complex multicellular organisms arise from the list of instructions coded in the genome. In this issue, modENCODE team members outline their plan of campaign. Data from the project are to be made available on http://www.modencode.org and elsewhere as the work progresses.


Nature | 2011

Comprehensive analysis of the chromatin landscape in Drosophila melanogaster

Peter V. Kharchenko; Artyom A. Alekseyenko; Yuri B. Schwartz; Aki Minoda; Nicole C. Riddle; Jason Ernst; Peter J. Sabo; Erica Larschan; Andrey A. Gorchakov; Tingting Gu; Daniela Linder-Basso; Annette Plachetka; Gregory Shanower; Michael Y. Tolstorukov; Lovelace J. Luquette; Ruibin Xi; Youngsook L. Jung; Richard Park; Eric P. Bishop; Theresa P. Canfield; Richard Sandstrom; Robert E. Thurman; David M. MacAlpine; John A. Stamatoyannopoulos; Manolis Kellis; Sarah C. R. Elgin; Mitzi I. Kuroda; Vincenzo Pirrotta; Gary H. Karpen; Peter J. Park

Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.


Nature | 2011

A cis-regulatory map of the Drosophila genome

Nicolas Nègre; Christopher D. Brown; Lijia Ma; Christopher A. Bristow; Steven W. Miller; Ulrich Wagner; Pouya Kheradpour; Matthew L. Eaton; Paul Michael Loriaux; Rachel Sealfon; Zirong Li; Haruhiko Ishii; Rebecca Spokony; Jia Chen; Lindsay Hwang; Chao Cheng; Richard P. Auburn; Melissa B. Davis; Marc Domanus; Parantu K. Shah; Carolyn A. Morrison; Jennifer Zieba; Sarah Suchy; Lionel Senderowicz; Alec Victorsen; Nicholas A. Bild; A. Jason Grundstad; David Hanley; David M. MacAlpine; Mattias Mannervik

Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide has successfully identified specific subtypes of regulatory elements. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb response elements, chromatin states, transcription factor binding sites, RNA polymerase II regulation and insulator elements; however, comprehensive annotation of the regulatory genome remains a significant challenge. Here we describe results from the modENCODE cis-regulatory annotation project. We produced a map of the Drosophila melanogaster regulatory genome on the basis of more than 300 chromatin immunoprecipitation data sets for eight chromatin features, five histone deacetylases and thirty-eight site-specific transcription factors at different stages of development. Using these data we inferred more than 20,000 candidate regulatory elements and validated a subset of predictions for promoters, enhancers and insulators in vivo. We identified also nearly 2,000 genomic regions of dense transcription factor binding associated with chromatin activity and accessibility. We discovered hundreds of new transcription factor co-binding relationships and defined a transcription factor network with over 800 potential regulatory relationships.


Genes & Development | 2010

Conserved nucleosome positioning defines replication origins

Matthew L. Eaton; Kyriaki Galani; Sukhyun Kang; Stephen P. Bell; David M. MacAlpine

The origin recognition complex (ORC) specifies replication origin location. The Saccharomyces cerevisiae ORC recognizes the ARS (autonomously replicating sequence) consensus sequence (ACS), but only a subset of potential genomic sites are bound, suggesting other chromosomal features influence ORC binding. Using high-throughput sequencing to map ORC binding and nucleosome positioning, we show that yeast origins are characterized by an asymmetric pattern of positioned nucleosomes flanking the ACS. The origin sequences are sufficient to maintain a nucleosome-free origin; however, ORC is required for the precise positioning of nucleosomes flanking the origin. These findings identify local nucleosomes as an important determinant for origin selection and function.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Epigenome characterization at single base-pair resolution

Jorja G. Henikoff; Jason A. Belsky; Kristina Krassovsky; David M. MacAlpine; Steven Henikoff

We have combined standard micrococcal nuclease (MNase) digestion of nuclei with a modified protocol for constructing paired-end DNA sequencing libraries to map both nucleosomes and subnucleosome-sized particles at single base-pair resolution throughout the budding yeast genome. We found that partially unwrapped nucleosomes and subnucleosome-sized particles can occupy the same position within a cell population, suggesting dynamic behavior. By varying the time of MNase digestion, we have been able to observe changes that reflect differential sensitivity of particles, including the eviction of nucleosomes. To characterize DNA-binding features of transcription factors, we plotted the length of each fragment versus its position in the genome, which defined the minimal protected region of each factor. This process led to the precise mapping of protected and exposed regions at and around binding sites, and also determination of the degree to which they are flanked by phased nucleosomes and subnucleosome-sized particles. Our protocol and mapping method provide a general strategy for epigenome characterization, including nucleosome phasing and dynamics, ATP-dependent nucleosome remodelers, and transcription factors, from a single-sequenced sample.


Nature | 2014

Comparative analysis of metazoan chromatin organization

Joshua W. K. Ho; Youngsook L. Jung; Tao Liu; Burak H. Alver; Soohyun Lee; Kohta Ikegami; Kyung Ah Sohn; Aki Minoda; Michael Y. Tolstorukov; Alex Appert; Stephen C. J. Parker; Tingting Gu; Anshul Kundaje; Nicole C. Riddle; Eric P. Bishop; Thea A. Egelhofer; Sheng'En Shawn Hu; Artyom A. Alekseyenko; Andreas Rechtsteiner; Dalal Asker; Jason A. Belsky; Sarah K. Bowman; Q. Brent Chen; Ron Chen; Daniel S. Day; Yan Dong; Andréa C. Dosé; Xikun Duan; Charles B. Epstein; Sevinc Ercan

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal ‘arms’, and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


The EMBO Journal | 2007

Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila.

Oliver Bell; Christiane Wirbelauer; Marc Hild; Annette N.D. Scharf; Michaela Schwaiger; David M. MacAlpine; Frederic Zilbermann; Fred W. van Leeuwen; Stephen P. Bell; Axel Imhof; Dan Garza; Antoine H. F. M. Peters; Dirk Schübeler

Post‐translational modifications of histones are involved in transcript initiation and elongation. Methylation of lysine 36 of histone H3 (H3K36me) resides promoter distal at transcribed regions in Saccharomyces cerevisiae and is thought to prevent spurious initiation through recruitment of histone‐deacetylase activity. Here, we report surprising complexity in distribution, regulation and readout of H3K36me in Drosophila involving two histone methyltransferases (HMTases). Dimethylation of H3K36 peaks adjacent to promoters and requires dMes‐4, whereas trimethylation accumulates toward the 3′ end of genes and relies on dHypb. Reduction of H3K36me3 is lethal in Drosophila larvae and leads to elevated levels of acetylation, specifically at lysine 16 of histone H4 (H4K16ac). In contrast, reduction of both di‐ and trimethylation decreases lysine 16 acetylation. Thus di‐ and trimethylation of H3K36 have opposite effects on H4K16 acetylation, which we propose enable dynamic changes in chromatin compaction during transcript elongation.


PLOS Biology | 2010

Expression in aneuploid Drosophila S2 cells.

Yu Zhang; John H. Malone; Sara K. Powell; Vipul Periwal; Eric P. Spana; David M. MacAlpine; Brian Oliver

Analysis of the relationship between gene copy number and gene expression in aneuploid male Drosophila cells reveals a global compensation mechanism in addition to X chromosome-specific dosage compensation.


Genome Research | 2011

Chromatin signatures of the Drosophila replication program.

Matthew L. Eaton; Joseph A. Prinz; Heather K. MacAlpine; George Tretyakov; Peter V. Kharchenko; David M. MacAlpine

DNA replication initiates from thousands of start sites throughout the Drosophila genome and must be coordinated with other ongoing nuclear processes such as transcription to ensure genetic and epigenetic inheritance. Considerable progress has been made toward understanding how chromatin modifications regulate the transcription program; in contrast, we know relatively little about the role of the chromatin landscape in defining how start sites of DNA replication are selected and regulated. Here, we describe the Drosophila replication program in the context of the chromatin and transcription landscape for multiple cell lines using data generated by the modENCODE consortium. We find that while the cell lines exhibit similar replication programs, there are numerous cell line-specific differences that correlate with changes in the chromatin architecture. We identify chromatin features that are associated with replication timing, early origin usage, and ORC binding. Primary sequence, activating chromatin marks, and DNA-binding proteins (including chromatin remodelers) contribute in an additive manner to specify ORC-binding sites. We also generate accurate and predictive models from the chromatin data to describe origin usage and strength between cell lines. Multiple activating chromatin modifications contribute to the function and relative strength of replication origins, suggesting that the chromatin environment does not regulate origins of replication as a simple binary switch, but rather acts as a tunable rheostat to regulate replication initiation events.

Collaboration


Dive into the David M. MacAlpine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen P. Bell

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terry L. Orr-Weaver

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge