David M. McKean
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David M. McKean.
Science | 2015
Jason Homsy; Samir Zaidi; Yufeng Shen; James S. Ware; Kaitlin E. Samocha; Konrad J. Karczewski; Steven R. DePalma; David M. McKean; Hiroko Wakimoto; Josh Gorham; Sheng Chih Jin; John Deanfield; Alessandro Giardini; George A. Porter; Richard Kim; Kaya Bilguvar; Francesc López-Giráldez; Irina Tikhonova; Shrikant Mane; Angela Romano-Adesman; Hongjian Qi; Badri N. Vardarajan; Lijiang Ma; Mark J. Daly; Amy E. Roberts; Mark W. Russell; Seema Mital; Jane W. Newburger; J. William Gaynor; Roger E. Breitbart
Putting both heart and brain at risk For reasons that are unclear, newborns with congenital heart disease (CHD) have a high risk of neurodevelopmental disabilities. Homsy et al. performed exome sequence analysis of 1200 CHD patients and their parents to identify spontaneously arising (de novo) mutations. Patients with both CHD and neurodevelopmental disorders had a much higher burden of damaging de novo mutations, particularly in genes with likely roles in both heart and brain development. Thus, clinical genotyping of patients with CHD may help to identify those at greatest risk of neurodevelopmental disabilities, allowing surveillance and early intervention. Science, this issue p. 1262 Genotyping of children with congenital heart disease may identify those at high risk of neurodevelopmental disorders. Congenital heart disease (CHD) patients have an increased prevalence of extracardiac congenital anomalies (CAs) and risk of neurodevelopmental disabilities (NDDs). Exome sequencing of 1213 CHD parent-offspring trios identified an excess of protein-damaging de novo mutations, especially in genes highly expressed in the developing heart and brain. These mutations accounted for 20% of patients with CHD, NDD, and CA but only 2% of patients with isolated CHD. Mutations altered genes involved in morphogenesis, chromatin modification, and transcriptional regulation, including multiple mutations in RBFOX2, a regulator of mRNA splicing. Genes mutated in other cohorts examined for NDD were enriched in CHD cases, particularly those with coexisting NDD. These findings reveal shared genetic contributions to CHD, NDD, and CA and provide opportunities for improved prognostic assessment and early therapeutic intervention in CHD patients.
Journal of Clinical Investigation | 2014
Malou van den Boogaard; Scott Smemo; Ozanna Burnicka-Turek; David E. Arnolds; Harmen J.G. van de Werken; Petra Klous; David M. McKean; Jochen D. Muehlschlegel; J. Moosmann; Okan Toka; Xinan Yang; Tamara T. Koopmann; Michiel E. Adriaens; Connie R. Bezzina; Wouter de Laat; Christine E. Seidman; Jonathan G. Seidman; Vincent M. Christoffels; Marcelo A. Nobrega; Phil Barnett; Ivan P. Moskowitz
Variants in SCN10A, which encodes a voltage-gated sodium channel, are associated with alterations of cardiac conduction parameters and the cardiac rhythm disorder Brugada syndrome; however, it is unclear how SCN10A variants promote dysfunctional cardiac conduction. Here we showed by high-resolution 4C-seq analysis of the Scn10a-Scn5a locus in murine heart tissue that a cardiac enhancer located in Scn10a, encompassing SCN10A functional variant rs6801957, interacts with the promoter of Scn5a, a sodium channel-encoding gene that is critical for cardiac conduction. We observed that SCN5A transcript levels were several orders of magnitude higher than SCN10A transcript levels in both adult human and mouse heart tissue. Analysis of BAC transgenic mouse strains harboring an engineered deletion of the enhancer within Scn10a revealed that the enhancer was essential for Scn5a expression in cardiac tissue. Furthermore, the common SCN10A variant rs6801957 modulated Scn5a expression in the heart. In humans, the SCN10A variant rs6801957, which correlated with slowed conduction, was associated with reduced SCN5A expression. These observations establish a genomic mechanism for how a common genetic variation at SCN10A influences cardiac physiology and predisposes to arrhythmia.
Journal of Cell Biology | 2003
David M. McKean; Lila Sisbarro; Dusko Ilic; Nihal Kaplan-Alburquerque; Raphael A. Nemenoff; Mary C.M. Weiser-Evans; Michael J. Kern; Peter Lloyd Jones
Fibroblast migration depends, in part, on activation of FAK and cellular interactions with tenascin-C (TN-C). Consistent with the idea that FAK regulates TN-C, migration-defective FAK-null cells expressed reduced levels of TN-C. Furthermore, expression of FAK in FAK-null fibroblasts induced TN-C, whereas inhibition of FAK activity in FAK–wild-type cells had the opposite effect. Paired-related homeobox 1 (Prx1) encodes a homeobox transcription factor that induces TN-C by interacting with a binding site within the TN-C promoter, and it also promotes fibroblast migration. Therefore, we hypothesized that FAK regulates TN-C by controlling the DNA-binding activity of Prx1 and/or by inducing Prx1 expression. Prx1–homeodomain binding site complex formation observed with FAK–wild-type fibroblasts failed to occur in FAK-null fibroblasts, yet expression of Prx1 in these cells induced TN-C promoter activity. Thus, FAK is not essential for Prx1 DNA-binding activity. However, activated FAK was essential for Prx1 expression. Functionally, Prx1 expression in FAK-null fibroblasts restored their ability to migrate toward fibronectin, in a manner that depends on TN-C. These results appear to be relevant in vivo because Prx1 and TN-C expression levels were reduced in FAK-null embryos. This paper suggests a model whereby FAK induces Prx1, and subsequently the formation of a TN-C–enriched ECM that contributes to fibroblast migration.
Developmental Cell | 2016
Daniel M. DeLaughter; Alexander G. Bick; Hiroko Wakimoto; David M. McKean; Joshua M. Gorham; Irfan S. Kathiriya; John T. Hinson; Jason Homsy; Jesse M. Gray; William T. Pu; Benoit G. Bruneau; Jonathan G. Seidman; Christine E. Seidman
Activation of complex molecular programs in specific cell lineages governs mammalian heart development, from a primordial linear tube to a four-chamber organ. To characterize lineage-specific, spatiotemporal developmental programs, we performed single-cell RNA sequencing of >1,200 murine cells isolated at seven time points spanning embryonic day 9.5 (primordial heart tube) to postnatal day 21 (mature heart). Using unbiased transcriptional data, we classified cardiomyocytes, endothelial cells, and fibroblast-enriched cells, thus identifying markers for temporal and chamber-specific developmental programs. By harnessing these datasets, we defined developmental ages of human and mouse pluripotent stem-cell-derived cardiomyocytes and characterized lineage-specific maturation defects in hearts of mice with heterozygous mutations in Nkx2.5 that cause human heart malformations. This spatiotemporal transcriptome analysis of heart development reveals lineage-specific gene programs underlying normal cardiac development and congenital heart disease.
Circulation Research | 2004
Kaori Ihida-Stansbury; David M. McKean; Sarah A. Gebb; James F. Martin; Troy Stevens; Raphael A. Nemenoff; Ann Akeson; Jessica Vaughn; Peter Lloyd Jones
Herein, we show that the paired-related homeobox gene, Prx1, is required for lung vascularization. Initial studies revealed that Prx1 localizes to differentiating endothelial cells (ECs) within the fetal lung mesenchyme, and later within ECs forming vascular networks. To begin to determine whether Prx1 promotes EC differentiation, fetal lung mesodermal cells were transfected with full-length Prx1 cDNA, resulting in their morphological transformation to an endothelial-like phenotype. In addition, Prx1-transformed cells acquired the ability to form vascular networks on Matrigel. Thus, Prx1 might function by promoting pulmonary EC differentiation within the fetal lung mesoderm, as well as their subsequent incorporation into vascular networks. To understand how Prx1 participates in network formation, we focused on tenascin-C (TN-C), an extracellular matrix (ECM) protein induced by Prx1. Immunocytochemistry/ histochemistry showed that a TN-C–rich ECM surrounds Prx1-positive pulmonary vascular networks both in vivo and in tissue culture. Furthermore, antibody-blocking studies showed that TN-C is required for Prx1-dependent vascular network formation on Matrigel. Finally, to determine whether these results were relevant in vivo, we examined newborn Prx1–wild-type (+/+) and Prx1-null (−/ −) mice and showed that Prx1 is critical for expression of TN-C and lung vascularization. These studies provide a framework to understand how Prx1 controls EC differentiation and their subsequent incorporation into functional pulmonary vascular networks.
Development | 2010
Jinzhe Mao; David M. McKean; Sunita Warrier; Joshua G. Corbin; Lee Niswander; Irene E. Zohn
Neural tube defects (NTDs) are some of the most common birth defects observed in humans. The incidence of NTDs can be reduced by peri-conceptional folic acid supplementation alone and reduced even further by supplementation with folic acid plus a multivitamin. Here, we present evidence that iron maybe an important nutrient necessary for normal development of the neural tube. Following implantation of the mouse embryo, ferroportin 1 (Fpn1) is essential for the transport of iron from the mother to the fetus and is expressed in the visceral endoderm, yolk sac and placenta. The flatiron (ffe) mutant mouse line harbors a hypomorphic mutation in Fpn1 and we have created an allelic series of Fpn1 mutations that result in graded developmental defects. A null mutation in the Fpn1 gene is embryonic lethal before gastrulation, hypomorphic Fpn1ffe/ffe mutants exhibit NTDs consisting of exencephaly, spina bifida and forebrain truncations, while Fpn1ffe/KI mutants exhibit even more severe NTDs. We show that Fpn1 is not required in the embryo proper but rather in the extra-embryonic visceral endoderm. Our data indicate that loss of Fpn1 results in abnormal morphogenesis of the anterior visceral endoderm (AVE). Defects in the development of the forebrain in Fpn1 mutants are compounded by defects in multiple signaling centers required for maintenance of the forebrain, including the anterior definitive endoderm (ADE), anterior mesendoderm (AME) and anterior neural ridge (ANR). Finally, we demonstrate that this loss of forebrain maintenance is due in part to the iron deficiency that results from the absence of fully functional Fpn1.
Developmental Dynamics | 2005
Sarah A. Gebb; Keith Fox; Jessica Vaughn; David M. McKean; Peter Lloyd Jones
Tenascin‐C (TN‐C) is a mesenchyme‐derived extracellular matrix (ECM) glycoprotein required for fetal lung branching morphogenesis. Given that the low oxygen (O2) environment of the fetus is also essential for normal lung branching morphogenesis, we determined whether fetal O2 tension supports this process by promoting TN‐C expression. Initial studies showed that 15‐day fetal rat lung explants cultured for 2 days at 3% O2 not only branched well, but they also expressed higher levels of TN‐C when compared to lungs maintained at 21% O2, which branched poorly. Antisense oligonucleotide studies demonstrated that TN‐C produced in response to 3% O2 was essential for lung branching morphogenesis. As well, exogenous TN‐C protein was shown to promote branching of lung epithelial rudiments cultured at 21% O2. Because ECM‐degrading proteinases are capable of catabolizing TN‐C protein, we reasoned that 3% O2 might promote TN‐C deposition by limiting the activity of these enzymes within the fetal lung. Consistent with this idea, gelatin zymography showed that the activity of a 72‐kDa gelatinase, identified as matrix metalloproteinase‐2 (MMP‐2), was lower at 3% O2 vs. 21% O2. Furthermore, pharmacologic inhibition of MMP‐2 activity in fetal lung explants cultured at 21% O2 resulted in increased TN‐C deposition within the mesenchyme, as well as enhanced branching morphogenesis. Collectively, these studies indicate that fetal O2 tension promotes TN‐C–dependent lung epithelial branching morphogenesis by limiting the proteolytic turnover of this ECM component within the adjacent mesenchyme. Developmental Dynamics 234:1–10, 2005.
Biology Open | 2012
David M. McKean; Lee Niswander
Summary Holoprosencephaly is the most common forebrain defect in humans. We describe two novel mouse mutants that display a holoprosencephaly-like phenotype. Both mutations disrupt genes in the glycerophosphatidyl inositol (GPI) biosynthesis pathway: gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored proteins are mislocalized in GPI biosynthesis mutants. Disruption of the GPI-anchored protein Cripto (mouse) and TDGF1 (human ortholog) have been shown to result in holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an HPE-like phenotype. Cripto is an obligate Nodal co-factor involved in TGF&bgr; signaling, and we show that TGF&bgr; signaling is reduced both in vitro and in vivo. This work demonstrates the importance of the GPI anchor in normal forebrain development and suggests that GPI biosynthesis genes should be screened for association with human holoprosencephaly.
Anesthesiology | 2015
Jochen D. Muehlschlegel; Danos C. Christodoulou; David M. McKean; Joshua M. Gorham; Erica Mazaika; Mahyar Heydarpour; Grace M. Lee; Steven R. DePalma; Tjorvi E. Perry; Amanda A. Fox; Stanton K. Shernan; Christine E. Seidman; Sary F. Aranki; J. G. Seidman; Simon C. Body
Background:The exact mechanisms that underlie the pathological processes of myocardial ischemia in humans are unclear. Cardiopulmonary bypass with cardioplegic arrest allows the authors to examine the whole transcriptional profile of human left ventricular myocardium at baseline and after exposure to cold cardioplegia-induced ischemia as a human ischemia model. Methods:The authors obtained biopsies from 45 patients undergoing aortic valve replacement surgery at baseline and after an average of 79 min of cold cardioplegic arrest. Samples were RNA sequenced and analyzed with the Partek® Genomics Suite (Partek Inc., St. Louis, MO) for differential expression. Ingenuity Pathway Analysis (Ingenuity Systems, Redwood City, CA) and Biobase ExPlain (Biobase GmbH, Wolfenbuettel, Germany) systems were used for functional and pathway analyses. Results:Of the 4,098 genes with a mean expression value greater than 5, 90% were down-regulated and 9.1% were up-regulated. Of those, 1,241 were significantly differentially expressed. Gene ontology analysis revealed significant down-regulation in immune inflammatory response and complement activation categories and highly consistent was the down-regulation of intelectin 1, proteoglycan, and secretory leukocyte peptidase inhibitor. Up-regulated genes of interest were FBJ murine osteosarcoma viral oncogene homolog and the hemoglobin genes hemoglobin &agr;1 (HBA1) and hemoglobin &bgr;. In addition, analysis of transcription factor–binding sites revealed interesting targets in factors regulating reactive oxygen species production, apoptosis, immunity, cytokine production, and inflammatory response. Conclusions:The authors have shown that the human left ventricle exhibits significant changes in gene expression in response to cold cardioplegia-induced ischemia during cardiopulmonary bypass, which provides great insight into the pathophysiology of ventricular ischemia, and thus, may help guide efforts to reduce myocardial damage during surgery.
Nature Communications | 2016
David M. McKean; Jason Homsy; Hiroko Wakimoto; Neil Patel; Joshua M. Gorham; Steven R. DePalma; James S. Ware; Samir Zaidi; Wenji Ma; Nihir Patel; Richard P. Lifton; Wendy K. Chung; Richard Kim; Yufeng Shen; Martina Brueckner; Elizabeth Goldmuntz; Andrew J. Sharp; Christine E. Seidman; Bruce D. Gelb; Jonathan G. Seidman
Congenital heart disease (CHD), a prevalent birth defect occurring in 1% of newborns, likely results from aberrant expression of cardiac developmental genes. Mutations in a variety of cardiac transcription factors, developmental signalling molecules and molecules that modify chromatin cause at least 20% of disease, but most CHD remains unexplained. We employ RNAseq analyses to assess allele-specific expression (ASE) and biallelic loss-of-expression (LOE) in 172 tissue samples from 144 surgically repaired CHD subjects. Here we show that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% with paternal allele expression—this cardiac-specific phenomenon seems unrelated to CHD. Further, compared with control subjects, CHD subjects have a significant burden of both LOE genes and ASE events associated with altered gene expression. These studies identify FGFBP2, LBH, RBFOX2, SGSM1 and ZBTB16 as candidate CHD genes because of significantly altered transcriptional expression.