Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M. Sheen is active.

Publication


Featured researches published by David M. Sheen.


IEEE Transactions on Microwave Theory and Techniques | 2001

Three-dimensional millimeter-wave imaging for concealed weapon detection

David M. Sheen; Douglas L. McMakin; Thomas E. Hall

Millimeter-wave imaging techniques and systems have been developed at the Pacific Northwest National Laboratory (PNNL), Richland, WA, for the detection of concealed weapons and contraband at airports and other secure locations. These techniques were derived from microwave holography techniques that utilize phase and amplitude information recorded over a two-dimensional aperture to reconstruct a focused image of the target. Millimeter-wave imaging is well suited for the detection of concealed weapons or other contraband carried on personnel since millimeter-waves are nonionizing, readily penetrate common clothing material, and are reflected from the human body and any concealed items. In this paper, a wide-bandwidth three-dimensional holographic microwave imaging technique is described. Practical weapon detection systems for airport or other high-throughput applications require high-speed scanning on the order of 3 to 10 s. To achieve this goal, a prototype imaging system utilizing a 27-33 GHz linear sequentially switched array and a high-speed linear scanner has been developed and tested. This system is described in detail along with numerous imaging results.


Proceedings of SPIE | 1996

Concealed explosive detection on personnel using a wideband holographic millimeter-wave imaging system

David M. Sheen; Douglas L. McMakin; H. D. Collins; Thomas E. Hall; Ronald H. Severtsen

A novel wideband millimeter-wave imaging system is presently being developed at Pacific Northwest National Laboratory (PNNL) that will allow rapid inspection of personnel for concealed explosives, handguns, or other threats. Millimeter-wavelength electromagnetic waves are effective for this application since they readily penetrate common clothing materials, while being partially reflected from the person under surveillance as well as any concealed items. To form an image rapidly, a linear array of 128 antennas is used to electronically scan over a horizontal aperture of 0.75 meters, while the linear array is mechanically swept over a vertical aperture of 2 meters. At each point over this 2-D aperture, coherent wideband data reflected from the target is gathered using wide-beamwidth antennas. The data is recorded coherently, and reconstructed (focused) using an efficient image reconstruction algorithm developed at PNNL. This algorithm works in the near-field of both the target and the scanned aperture and preserves the diffraction limited resolution of less than one-wavelength. The wide frequency bandwidth is used to provide depth resolution, which allows the image to be fully focused over a wide range of depths, resulting in a full 3-D image. This is not possible in a normal optical (or quasi-optical) imaging system. This system has been extensively tested using concealed metal and plastic weapons, and has recently been tested using real plastic explosives (C-4 and RDX) and simulated liquid explosives concealed on personnel. Millimeter-waves do not penetrate the human body, so it is necessary to view the subject from several angles in order to fully inspect for concealed weapons. Full animations containing 36 - 72 frames recorded from subjects rotated by 5 - 10 degrees, have been found to be extremely useful for rapid, effective inspection of personnel.


Radiation Research | 2004

Two-year chronic bioassay study of rats exposed to a 1.6 GHz radiofrequency signal.

Larry E. Anderson; David M. Sheen; Bary W. Wilson; Sondra L. Grumbein; Jeffery A. Creim; Lyle B. Sasser

Abstract Anderson, L. E., Sheen, D. M., Wilson, B. W., Grumbein, S. L., Creim, J. A. and Sasser, L. B. Two-Year Chronic Bioassay Study of Rats Exposed to a 1.6 GHz Radiofrequency Signal. Radiat. Res. 162, 201–210 (2004). The purpose of this study was to determine whether long-term exposure to a 1.6 GHz radiofrequency (RF) field would affect the incidence of cancer in Fischer 344 rats. Thirty-six timed-pregnant rats were randomly assigned to each of three treatment groups: two groups exposed to a far-field RF Iridium signal and a third group that was sham exposed. Exposures were chosen such that the brain SAR in the fetuses was 0.16 W/kg. Whole-body far-field exposures were initiated at 19 days of gestation and continued at 2 h/day, 7 days/week for dams and pups after parturition until weaning (∼23 days old). The offspring (700) of these dams were selected, 90 males and 90 females for each near-field treatment group, with SAR levels in the brain calculated to be as follows: (1) 1.6 W/kg, (2) 0.16 W/kg and (3) near-field sham controls, with an additional 80 males and 80 females as shelf controls. Confining, head-first, near-field exposures of 2 h/day, 5 days/week were initiated when the offspring were 36 ± 1 days old and continued until the rats were 2 years old. No statistically significant differences were observed among treatment groups for number of live pups/litter, survival index, and weaning weights, nor were there differences in clinical signs or neoplastic lesions among the treatment groups. The percentages of animals surviving at the end of the near-field exposure were not different among the male groups. In females a significant decrease in survival time was observed for the cage control group.


Law Enforcement Technologies: Identification Technologies and Traffic Safety | 1995

Wideband millimeter-wave holographic weapons surveillance systems

Douglas L. McMakin; David M. Sheen; H. D. Collins; Thomas E. Hall; Ronald H. Severtsen

A new wideband millimeter wave holographic imaging technqiue is under developement for use in concealed weapons detection system. This new wideband technique provides far superior images than single frequency holographic techniques on thick objects such as the human body. The wideband technique obtains fully focused images over a designated volume and provides excellent lateral and depth resolution. Using this method, a 3D volumetric hologram is gathered with a millimeter wave linear array, a mechanical scanner, and a sweep frequency tranceiver. The 3D volumetric hologram is then processed by high-speed computational processors to reconstruct the fully focused image. Two prototype wide band millimeter wave holographic arrays have been developed at the Pacific Northwest Laboratory. The two arrays consist of sequentially switched 2 by 37 Ku band (12.5-18 GHz) and 2 by 64 Ka band (26.5-40 GHz) systems which are coupled to high-speed sweep frequency heterodyne transceivers. The arrays are used to obtain volumetric imaging data at high speeds by electronically sequencing and frequency sweeping the array antennas along 1D while performing a mechanical scan along the other dimension. The current prototype system scans an aperture the size of a large human body in about one second. Extensive laboratory testing has been performed with people carrying various concealed weapons and innocuous items with both imaging arrays during the first quarter of 1995.


Substance Identification Technologies | 1994

Millimeter-wave high-resolution holographic surveillance system

Douglas L. McMakin; David M. Sheen; H. D. Collins; Thomas E. Hall; Russell R. Smith

A prototype millimeter wave holographic surveillance system has been developed and demonstrated at the Pacific Northwest Laboratory (PNL). The prototype millimeter wave holographic surveillance system developed at PNL consists of a sequentially switched 2 X 64 element array coupled to a 35 GHz bi-static transceiver. The sequentially switched array of antennas can be used to obtain the holographic data at high speed by electronically sequencing the antennas along one dimension and performing a mechanical scan along the other dimension. A 1D mechanical scan can be performed in about one second. The prototype system scans an aperture of 0.75 by 2.05 m. This system has been demonstrated and images have been obtained on volunteers at Sea-Tac International airport in Seattle, Washington.


Applications of Signal and Image Processing in Explosives Detection Systems | 1993

Near-field millimeter-wave imaging for weapons detection

David M. Sheen; Douglas L. McMakin; H. D. Collins; Thomas E. Hall

Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration/signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two- dimensional image formation from a one-dimensional scanned (or array) system has been developed. Signal/image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far- field and narrow-bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a Ka-band system.


Substance Identification Technologies | 1994

Weapon detection using a wideband millimeter-wave linear array imaging technique

David M. Sheen; Douglas L. McMakin; H. Dale Collins; Thomas E. Hall

A wideband millimeter-wave imaging technique has been developed by the Pacific Northwest Laboratory (PNL) for the detection of concealed weapons carried by personnel through high- security areas, such as airports. A practical airport system based on this technique should be capable of real-time image frame rate of 10 to 30 frames per second. This technique, similar to an extremely high-resolution radar system, actively probes the target with millimeter-waves and reconstructs an image from the backscattered phase and amplitude data. The primary goal of the system is the detection of weapons and the placement of the detected weapon on the body. An important additional goal is the identification of detected items, which requires a high resolution imaging technique. An experimental system has been developed at PNL which has gathered millimeter wave imagery from clothed mannequins and human beings carrying concealed weapons. This system is capable of forming images in excess of 1 meter by 2 meters at resolutions on the order of 1 cm, and is capable of scanning in less than 5 seconds. This experimental system could be enhanced to function in real time by eliminating the relatively slow mechanical scan. A sequentially switched linear array of transceiver antennas would allow real-time gathering of the imaging information, since the data would be electronically scanned in the lateral direction and electronically swept in frequency. This allows formation of a 2D image from a 1D array of transceiver antennas.


Law Enforcement Technologies: Identification Technologies and Traffic Safety | 1995

Circular scanned millimeter-wave imaging system for weapon detection

David M. Sheen; Douglas L. McMakin; H. D. Collins

A novel wideband millimeter-wave imaging system concept has been developed at Pacific Northwest Laboratory for the detection of concelaed weapons. Millimeter-waves are ideal for personnel surveillance applications since they will readily penetrate common clothing materials, and have relatively short wavelengths allowing for high resolution imaging. This system concept is based on a circular synthetic aperture imaging technique, in which a circular aperture is scanned and an image is formed of the target located near the scanned aperture. A laboratory imaging system has been developed and results have been obtained using both mannequins and humans with concealed weapons. The technique is readily adaptable to a real- time imaging system using a relatively small number of transceivers and a relatively slow scanner speed.


Spie Newsroom | 2012

Advanced Millimeter-Wave Imaging Enhances Security Screening

David M. Sheen; Bruce E. Bernacki; Douglas L. McMakin

Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.


Proceedings of SPIE | 1993

Ultrawideband radar clutter measurements and analysis

Michael T. Tuley; David M. Sheen; H. D. Collins; Earl V. Sager; A. C. Schultheis

This paper reports the results of ultrawideband radar clutter measurements made by Battelle- Pacific Northwest Laboratories and the System Planning Corporation near Sequim, WA. The measurement area is a mountainous coniferous forest with occasional roads and clear-cut areas. Local grazing angles range from near zero to approximately 40 degree(s). Very limited data are also presented from measurements made in a desert-type terrain near Richland, WA. Two ultrawideband radar systems were employed in the data collection. An impulse system providing an approximate one nanosecond monocycle pulse (bandwidth of 300 MHz - 1000 MHz) acquired data over a 0.7 km2 area (121,000 resolution cells). A step chirp radar with the same total bandwidth as the impulse system collected data over a 6.2 km2 area (780,000 resolution cells), including the area sampled by the impulse system. Wideband TEM horn antennas (log-periodic antennas for the step chirp system) deployed on a 19 m horizontally scanned aperture were used for transmission and reception, providing a 1.5 degree(s) azimuth resolution at 300 MHz for both systems.

Collaboration


Dive into the David M. Sheen's collaboration.

Top Co-Authors

Avatar

Douglas L. McMakin

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

Thomas E. Hall

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. D. Collins

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

Paul E. Keller

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeffrey W. Griffin

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jonathan R. Tedeschi

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brian K. Hatchell

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bruce E. Bernacki

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wayne M. Lechelt

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge