Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas E. Hall is active.

Publication


Featured researches published by Thomas E. Hall.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin α2-deficient congenital muscular dystrophy

Thomas E. Hall; Robert J. Bryson-Richardson; Silke Berger; Arie Jacoby; Nicholas J. Cole; Georgina E. Hollway; Joachim Berger; Peter D. Currie

Mutations in the human laminin α2 (LAMA2) gene result in the most common form of congenital muscular dystrophy (MDC1A). There are currently three models for the molecular basis of cellular pathology in MDC1A: (i) lack of LAMA2 leads to sarcolemmal weakness and failure, followed by cellular necrosis, as is the case in Duchenne muscular dystrophy (DMD); (ii) loss of LAMA2-mediated signaling during the development and maintenance of muscle tissue results in myoblast proliferation and fusion defects; (iii) loss of LAMA2 from the basement membrane of the Schwann cells surrounding the peripheral nerves results in a lack of motor stimulation, leading to effective denervation atrophy. Here we show that the degenerative muscle phenotype in the zebrafish dystrophic mutant, candyfloss (caf) results from mutations in the laminin α2 (lama2) gene. In vivo time-lapse analysis of mechanically loaded fibers and membrane permeability assays suggest that, unlike DMD, fiber detachment is not initially associated with sarcolemmal rupture. Early muscle formation and myoblast fusion are normal, indicating that any deficiency in early Lama2 signaling does not lead to muscle pathology. In addition, innervation by the primary motor neurons is unaffected, and fiber detachment stems from muscle contraction, demonstrating that muscle atrophy through lack of motor neuron activity does not contribute to pathology in this system. Using these and other analyses, we present a model of lama2 function where fiber detachment external to the sarcolemma is mechanically induced, and retracted fibers with uncompromised membranes undergo subsequent apoptosis.


The Journal of Neuroscience | 2012

Fgf-Dependent Glial Cell Bridges Facilitate Spinal Cord Regeneration in Zebrafish

Yona Goldshmit; Tamar Sztal; Patricia R. Jusuf; Thomas E. Hall; Mai Nguyen-Chi; Peter D. Currie

Adult zebrafish show a remarkable capacity to regenerate their spinal column after injury, an ability that stands in stark contrast to the limited repair that occurs within the mammalian CNS post-injury. The reasons for this interspecies difference in regenerative capacity remain unclear. Here we demonstrate a novel role for Fgf signaling during glial cell morphogenesis in promoting axonal regeneration after spinal cord injury. Zebrafish glia are induced by Fgf signaling, to form an elongated bipolar morphology that forms a bridge between the two sides of the resected spinal cord, over which regenerating axons actively migrate. Loss of Fgf function inhibits formation of this “glial bridge” and prevents axon regeneration. Despite the poor potential for mammalian axonal regeneration, primate astrocytes activated by Fgf signaling adopt a similar morphology to that induced in zebrafish glia. This suggests that differential Fgf regulation, rather than intrinsic cell differences, underlie the distinct responses of mammalian and zebrafish glia to injury.


Neuromuscular Disorders | 2010

Dystrophin-deficient zebrafish feature aspects of the Duchenne muscular dystrophy pathology

Joachim Berger; Silke Berger; Thomas E. Hall; Graham J. Lieschke; Peter D. Currie

Duchenne muscular dystrophy is caused by mutations in the dystrophin gene. As in humans, zebrafish dystrophin is initially expressed at the peripheral ends of the myofibres adjacent to the myotendinous junction and gradually shifts to non-junctional sites. Dystrophin-deficient zebrafish larvae are characterised by abundant necrotic fibres being replaced by mono-nucleated infiltrates, extensive fibrosis accompanied by inflammation, and a broader variation in muscle fibre cross-sectional areas. Muscle progenitor proliferation cannot compensate for the extensive skeletal muscle loss. Live imaging of dystrophin-deficient zebrafish larvae documents detaching myofibres elicited by muscle contraction. Correspondingly, the progressive phenotype of dystrophin-deficient zebrafish resembles many aspects of the human disease, suggesting that specific advantages of the zebrafish model system, such as the ability to undertake in vivo drug screens and real time analysis of muscle fibre loss, could be used to make novel insights relevant to understanding and treating the pathological basis of dystrophin-deficient muscular dystrophy.


Nature | 2014

Haematopoietic stem cell induction by somite-derived endothelial cells controlled by meox1

Phong Dang Nguyen; Georgina E. Hollway; Carmen Sonntag; Lee B. Miles; Thomas E. Hall; Silke Berger; Kristine Joy Fernandez; David B. Gurevich; Nicholas J. Cole; Sara Alaei; Mirana Ramialison; Robert L. Sutherland; Jose M. Polo; Graham J. Lieschke; Peter D. Currie

Haematopoietic stem cells (HSCs) are self-renewing stem cells capable of replenishing all blood lineages. In all vertebrate embryos that have been studied, definitive HSCs are generated initially within the dorsal aorta (DA) of the embryonic vasculature by a series of poorly understood inductive events. Previous studies have identified that signalling relayed from adjacent somites coordinates HSC induction, but the nature of this signal has remained elusive. Here we reveal that somite specification of HSCs occurs via the deployment of a specific endothelial precursor population, which arises within a sub-compartment of the zebrafish somite that we have defined as the endotome. Endothelial cells of the endotome are specified within the nascent somite by the activity of the homeobox gene meox1. Specified endotomal cells consequently migrate and colonize the DA, where they induce HSC formation through the deployment of chemokine signalling activated in these cells during endotome formation. Loss of meox1 activity expands the endotome at the expense of a second somitic cell type, the muscle precursors of the dermomyotomal equivalent in zebrafish, the external cell layer. The resulting increase in endotome-derived cells that migrate to colonize the DA generates a dramatic increase in chemokine-dependent HSC induction. This study reveals the molecular basis for a novel somite lineage restriction mechanism and defines a new paradigm in induction of definitive HSCs.


Biomaterials | 2011

The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel

Richard J. Williams; Thomas E. Hall; Veronica Glattauer; Jacinta F. White; Paul Pasic; Anders B. Sorensen; Lynne J. Waddington; Keith M. McLean; Peter D. Currie; Patrick G. Hartley

We demonstrate the distribution of the important extracellular matrix protein laminin in a novel biomaterial consisting of a hydrogel underpinned by nanofibrillar networks. These are formed by the immobilised enzyme mediated self-assembly of fmoc-L(3) (9-fluorenylmethoxycarbonyl-tri-leucine). The peptide assembly yields nanofibrils formed of β-sheets that are locked together via π-stacking interactions. This ordering allows the localisation of the peptide sidechains on the surface, creating a hydrophobic environment. This induces the formation of bundles of these nanofibrils producing a clear hydrogel. This mechanism enables the three dimensional distribution of laminin throughout the network via supramolecular interactions. These forces favour the formation and improve the order of the network itself, as observed by spectroscopic and mechanical testing. In order to test the stability and suitability of this class of material for in vivo applications, we utilise microinjection to deliver the biomaterial under fine spatial control into a dystrophic zebrafish model organism, which lacks laminin as a result of a genetic mutation. Using confocal and transmission electron microscopy, we confirm that the biomaterial remains stable structurally, and is confined spatially to the site of injection.


BMC Biology | 2007

FishNet: an online database of zebrafish anatomy

Robert J. Bryson-Richardson; Silke Berger; Thomas F. Schilling; Thomas E. Hall; Nicholas J. Cole; Abigail Gibson; James Sharpe; Peter D. Currie

BackgroundOver the last two decades, zebrafish have been established as a genetically versatile model system for investigating many different aspects of vertebrate developmental biology. With the credentials of zebrafish as a developmental model now well recognized, the emerging new opportunity is the wider application of zebrafish biology to aspects of human disease modelling. This rapidly increasing use of zebrafish as a model for human disease has necessarily generated interest in the anatomy of later developmental phases such as the larval, juvenile, and adult stages, during which many of the key aspects of organ morphogenesis and maturation take place. Anatomical resources and references that encompass these stages are non-existent in zebrafish and there is therefore an urgent need to understand how different organ systems and anatomical structures develop throughout the life of the fish.ResultsTo overcome this deficit we have utilized the technique of optical projection tomography to produce three-dimensional (3D) models of larval fish. In order to view and display these models we have created FishNet http://www.fishnet.org.au, an interactive reference of zebrafish anatomy spanning the range of zebrafish development from 24 h until adulthood.ConclusionFishNet contains more than 36 000 images of larval zebrafish, with more than 1 500 of these being annotated. The 3D models can be manipulated on screen or virtually sectioned. This resource represents the first complete embryo to adult atlas for any species in 3D.


PLOS Biology | 2011

Development and Evolution of the Muscles of the Pelvic Fin

Nicholas J. Cole; Thomas E. Hall; Emily K. Don; Silke Berger; Catherine A. Boisvert; Christine Neyt; Rolf Ericsson; Jean M.P. Joss; David B. Gurevich; Peter D. Currie

Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition.


The Journal of Experimental Biology | 2003

Temperature and the expression of seven muscle-specific protein genes during embryogenesis in the Atlantic cod Gadus morhua L.

Thomas E. Hall; Nicholas J. Cole; Ian A. Johnston

SUMMARY Seven cDNA clones coding for different muscle-specific proteins (MSPs) were isolated from the fast muscle tissue of Atlantic cod Gadus morhua L. In situ hybridization using cRNA probes was used to characterize the temporal and spatial patterns of gene expression with respect to somite stage in embryos incubated at 4°C, 7°C and 10°C. MyoD transcripts were first observed in the presomitic mesoderm prior to somite formation, and in the lateral compartment of the forming somites. MyoD expression was not observed in the adaxial cells that give rise to the slow muscle layer, and expression was undetectable by in situ hybridization in the lateral somitic mesoderm after the 35-somite stage, during development of the final ∼15 somites. RT-PCR analysis, however, confirmed the presence of low levels of the transcript during these later stages. A phylogenetic comparison of the deduced aminoacid sequences of the full-length MyoD cDNA clone and those from other teleosts, and inference from the in situ expression pattern suggested homology with a second paralogue (MyoD2) recently isolated from the gilthead seabream Sparus aurata. Following MyoD expression,α -actin was the first structural gene to be switched on at the 16-somite stage, followed by myosin heavy chain, troponin T, troponin I and muscle creatine kinase. The final mRNA in the series to be expressed was troponin C. All genes were switched on prior to myofibril assembly. The troponin C sequence was unusual in that it showed the greatest sequence identity with the rainbow trout Oncorhynchus mykiss cardiac/slow form, but was expressed in the fast myotomal muscle and not in the heart. In addition, the third TnC calcium binding site showed a lower level of sequence conservation than the rest of the sequence. No differences were seen in the timing of appearance or rate of posterior progression (relative to somite stage) of any MSP transcripts between embryos raised at the different temperatures. It was concluded that myofibrillar genes are activated asynchronously in a distinct temporal order prior to myofibrillar assembly and that this process was highly canalized over the temperature range studied.


Development | 2009

The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscle detachment

Arie S. Jacoby; Elisabeth M. Busch-Nentwich; Robert J. Bryson-Richardson; Thomas E. Hall; Joachim Berger; Silke Berger; Carmen Sonntag; Caroline Sachs; Robert Geisler; Derek L. Stemple; Peter D. Currie

The skeletal muscle basement membrane fulfils several crucial functions during development and in the mature myotome and defects in its composition underlie certain forms of muscular dystrophy. A major component of this extracellular structure is the laminin polymer, which assembles into a resilient meshwork that protects the sarcolemma during contraction. Here we describe a zebrafish mutant, softy, which displays severe embryonic muscle degeneration as a result of initial basement membrane failure. The softy phenotype is caused by a mutation in the lamb2 gene, identifying laminin β2 as an essential component of this basement membrane. Uniquely, softy homozygotes are able to recover and survive to adulthood despite the loss of myofibre adhesion. We identify the formation of ectopic, stable basement membrane attachments as a novel means by which detached fibres are able to maintain viability. This demonstration of a muscular dystrophy model possessing innate fibre viability following muscle detachment suggests basement membrane augmentation as a therapeutic strategy to inhibit myofibre loss.


Journal of Cell Biology | 2015

The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle

Harriet P. Lo; Susan J. Nixon; Thomas E. Hall; Belinda S. Cowling; Charles Ferguson; Garry P. Morgan; Nicole L. Schieber; Manuel A. Fernandez-Rojo; Michele Bastiani; Matthias Floetenmeyer; Nick Martel; Jocelyn Laporte; Paul F. Pilch; Robert G. Parton

The caveolar membrane microdomain plays an integral role in stabilizing the muscle fiber surface in mice and zebrafish.

Collaboration


Dive into the Thomas E. Hall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silke Berger

Australian Regenerative Medicine Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joachim Berger

Australian Regenerative Medicine Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge