David M. Vu
Children's Hospital Oakland Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David M. Vu.
The Journal of Infectious Diseases | 2006
David M. Vu; Jo Anne Welsch; Patricia Zuno-Mitchell; Josefa V. Dela Cruz; Dan M. Granoff
BACKGROUND A quadrivalent meningococcal conjugate vaccine (MCV-4) is recommended for United States teenagers. The duration of protective immunity is unknown. We investigated serum antibody persistence 3 years after vaccination of adolescents. METHODS Serum samples from participants of a randomized trial who had received MCV-4 (n=52) or polysaccharide vaccine (MPSV-4; n=48) and from unvaccinated controls (n=60) were assayed for serogroups C, W-135, and Y anticapsular antibody concentrations by use of a radioantigen binding assay and for bactericidal activity (in a human complement assay) and passive protection against serogroup C bacteremia in an infant rat model. RESULTS A higher proportion of participants in the vaccine groups had protective bactericidal titers (> or =1 : 4), compared with that in the control group (for MCV-4 recipients vs. controls, P<.01; for MPSV-4 recipients vs. controls, P< or =.06). More MCV-4 recipients had W-135 bactericidal titers > or =1 : 4 than did MPSV-4 recipients (P=.01). More MCV-4 recipients had passive protective activity against serogroup C bacteremia than did MPSV-4 recipients (76% vs. 49%; P<.01). The differences in protective activity were largest between participants in the vaccine groups with bactericidal titers <1 : 4 (63% protective in MCV-4 recipients vs. 31% protective in MPSV-4 recipients; P=.01). CONCLUSIONS Compared with MPSV-4, MCV-4 elicited greater persistence of antibody activity against serogroups C and W-135 at 3 years after vaccination in adolescents. On the basis of passive protection data in an infant rat model, bactericidal titers > or =1 : 4 underestimate protective immunity.
Vaccine | 2011
David M. Vu; Tracy T. Wong; Dan M. Granoff
A meningococcal group B vaccine containing multiple protein antigens including factor H binding protein (fHbp) and Neisserial heparin binding antigen (NHba) is in clinical development. The ability of antibodies against individual antigens to interact and augment protective immunity is unknown. We assayed human complement-mediated bactericidal activity (SBA) in stored sera from six immunized adults before and after depletion of antibodies to fHbp and/or NHba. All six subjects developed ≥ 4-fold increases in SBA titer against a test strain with fHbp in the variant 1 group with an amino acid sequence that matched the vaccine antigen (GMT <1:4 baseline, to 1:139 after 3 doses of vaccine). By adsorption 88 to >95% of the SBA was directed against fHbp. Four subjects developed ≥ 4-fold increases in SBA titer against a test strain with a heterologous fHbp variant 2 antigen and a homologous NHba amino acid sequence that matched the vaccine antigen (GMT <1:4 baseline, to 1:45). SBA was directed primarily against NHba in one subject, against fHbp in a second, while depletion of either anti-NHba or anti-fHbp antibody removed the majority of SBA in sera from two subjects. In all four subjects, depletion of both anti-fHbp and anti-NHba antibodies removed more SBA than depletion of either antibody individually. Mixing a mouse non-bactericidal anti-fHbp variant 1 antiserum with a mouse anti-NHba antiserum also augmented the anti-NHba SBA titer against this test strain. For meningococcal vaccines that target relatively sparsely exposed antigens such fHbp or NHba, non-bactericidal antibodies against individual antigens can cooperate and elicit SBA.
Mbio | 2013
Lisa A. Lewis; David M. Vu; Shreekant Vasudhev; Jutamas Shaughnessy; Dan M. Granoff; Sanjay Ram
ABSTRACT The identification of “factor H binding protein (fHbp)-null” invasive meningococcal isolates and the realization that widespread use of fHbp-based vaccines could herald selection of such strains prompted us to characterize novel mechanisms of alternative pathway (AP) inhibition on meningococci. Of seven strains engineered to lack four known AP-inhibiting molecules, capsular polysaccharide, lipooligosaccharide sialic acid, fHbp, and neisserial surface protein A (quadruple mutants), four strains inhibited human AP-mediated C3 deposition. All four expressed the porin B2 (PorB2) molecule, and three strains belonged to the hypervirulent ST-11 lineage. Consistent with reduced C3 deposition, the rate of C3a generation by a PorB2 isolate was lower than that by a PorB3 strain. Allelic replacement of PorB3 with PorB2, in both encapsulated and unencapsulated strains, confirmed the role of PorB2 in AP inhibition. Expression of PorB2 increased resistance to complement-dependent killing relative to that seen in an isogenic PorB3-expressing strain. Adult rabbit and mouse APs were unimpeded on all mutants, and human fH inhibited nonhuman C3 deposition on PorB2-expressing strains, which provided functional evidence for human fH-dependent AP regulation by PorB2. Low-affinity binding of full-length human fH to quadruple mutants expressing PorB2 was demonstrated. fH-like protein 1 (FHL-1; contains fH domains 1 through 7) and fH domains 6 and 7 fused to IgG Fc bound to one PorB2-expressing quadruple mutant, which suggested that fH domains 6 and 7 may interact with PorB2. These results associate PorB2 expression with serum resistance and presage the appearance of fHbp-null and hypervirulent ST-11 isolates that may evade killing by fHbp-based vaccines. IMPORTANCE The widespread use of antimeningococcal vaccines based on factor H (fH) binding protein (fHbp) is imminent. Meningococci that lack fHbp were recently isolated from persons with invasive disease, and these fHbp-null strains could spawn vaccine failure. Our report provides a molecular basis for an explanation of how fHbp-null strains may evade the host immune system. Meningococci possess several mechanisms to subvert killing by the alternative pathway (AP) of complement, including production of the fHbp and NspA fH binding proteins. Here we show that a meningococcal protein called porin B2 (PorB2) contributes to inhibition of the AP on the bacterial surface. A majority of the “fHbp-null” isolates identified, as well as all members of a “hypervirulent” lineage (called ST-11), express PorB2. Our findings highlight the potential for the emergence of fHbp-negative strains that are able to regulate the AP and may be associated with fHbp vaccine failure. The widespread use of antimeningococcal vaccines based on factor H (fH) binding protein (fHbp) is imminent. Meningococci that lack fHbp were recently isolated from persons with invasive disease, and these fHbp-null strains could spawn vaccine failure. Our report provides a molecular basis for an explanation of how fHbp-null strains may evade the host immune system. Meningococci possess several mechanisms to subvert killing by the alternative pathway (AP) of complement, including production of the fHbp and NspA fH binding proteins. Here we show that a meningococcal protein called porin B2 (PorB2) contributes to inhibition of the AP on the bacterial surface. A majority of the “fHbp-null” isolates identified, as well as all members of a “hypervirulent” lineage (called ST-11), express PorB2. Our findings highlight the potential for the emergence of fHbp-negative strains that are able to regulate the AP and may be associated with fHbp vaccine failure.
Infection and Immunity | 2012
David M. Vu; Jutamas Shaughnessy; Lisa A. Lewis; Sanjay Ram; Peter A. Rice; Dan M. Granoff
ABSTRACT Neisseria meningitidis binds the complement downregulating protein, factor H (fH), which enables the organism to evade host defenses. Two fH ligands, fHbp and NspA, are known to bind specifically to human fH. We developed a human fH transgenic infant rat model to investigate the effect of human fH on meningococcal bacteremia. At 18 h after intraperitoneal challenge with 560 CFU of group B strain H44/76, all 19 human fH-positive rats had positive blood cultures compared to 0 of 7 human fH-negative control littermates (P < 0.0001). Human fH-positive infant rats also developed bacteremia after challenge with isogenic mutants of H44/76 in which genes encoding fHbp and NspA (ΔfHbp ΔNspA mutant) or the lipooligosaccharide sialyltransferase (Δlst mutant) had been inactivated. A fully encapsulated ΔfHbp ΔNspA Δlst mutant unable to sialylate lipooligosaccharide or bind human fH via the known fH ligands did not cause bacteremia, which argued against global susceptibility to bacteremia resulting from random integration of the transgene into the rat genome. In vitro, the wild-type and ΔfHbp ΔNspA mutant strains were killed by as little as 20% wild-type infant rat serum. The addition of 3 μg of human fH/ml permitted survival of the wild-type strain in up to 60% infant rat serum, whereas ≥33 μg of human fH/ml was required to rescue the ΔfHbp ΔNspA mutant. The ability of meningococci lacking expression of fHbp and NspA to cause invasive disease in human fH transgenic rats and to survive in wild-type infant rat serum supplemented with human fH indicates an additional human fH-dependent mechanism of evasion of innate immunity.
Scientific Reports | 2012
David M. Vu; Rolando Pajon; Donald C. Reason; Dan M. Granoff
Meningococcal factor H binding protein (fHbp) is an important vaccine antigen for prevention of disease caused by capsular group B strains. The protein has been sub-classified into three variant groups. Most anti-fHbp antibodies are variant group-specific and recognize epitopes on the C-terminal domain. We report a murine IgG1 mAb, JAR 41, which broadly cross-reacted with fHbp sequence variants from all variant groups. The mAb bound to the surface of live meningococci with fHbp from each of the three variant groups. In combination with second non-bactericidal anti-fHbp mAbs, JAR 41 elicited complement-mediated bactericidal activity in vitro, and augmented passive protection against meningococcal bacteremia in human fH transgenic rats. The epitope was located on a conserved region of the N-terminal portion of the fHbp molecule opposite that of fH contact residues. The data underscore the importance of broadly cross-reactive, surface-exposed epitopes on the N-terminal domain in the design of protective fHbp vaccines.
The Journal of Infectious Diseases | 2006
David M. Vu; Dominic F. Kelly; Paul T. Heath; Noel D. McCarthy; Andrew J. Pollard; Dan M. Granoff
BACKGROUND Group C meningococcal conjugate-vaccine effectiveness in the United Kingdom declines from ~90% in the first year to 0% between 1 and 4 years after immunization in infants immunized at 2, 3, and 4 months of age and to 61% in toddlers given a single dose. Confidence intervals are wide, and the extent of protection is uncertain. METHODS Serum samples were obtained from children 3-5 years of age who were participants in a preschool booster-vaccine trial. Serum bactericidal activity was measured with human complement. Group C anticapsular antibody concentrations were measured by a radioantigen binding assay. Passive protection was analyzed in an infant rat bacteremia model. RESULTS Serum samples from UK children who had been immunized 2-3 years earlier as infants or toddlers had higher levels of radioantigen binding, bactericidal activity, and passive protection than did historical control serum samples from unimmunized children (P<.05). A higher proportion of children immunized as infants had serum bactericidal activity titers > or =1 : 4 (considered to be protective) than those immunized as toddlers (61% vs. 24%; P<.01), but there were no significant differences in the proportion of serum samples conferring passive protection (50% and 41%, respectively; P=.4). CONCLUSIONS We found no evidence of lower immunity in children immunized as infants than as toddlers. On the basis of serum bactericidal activity and/or passive protection, 40%-50% of both age groups are protected at 2-3 years after immunization, which was significantly greater than in unimmunized historical controls (<5%).
Clinical and Vaccine Immunology | 2006
David M. Vu; Alberdina W. de Boer; Lisa Danzig; George Santos; Bridget Canty; Betty M. Flores; Dan M. Granoff
ABSTRACT Meningococcal group C polysaccharide-protein conjugate vaccines (MCV) prime infants and children for memory anticapsular responses upon subsequent exposure to unconjugated polysaccharide. The objective of this study was to determine whether MCV primes vaccine-naïve adults and adults previously vaccinated with meningococcal polysaccharide vaccine (MPSV) for memory antibody responses. Meningococcal vaccine-naïve adults were randomized to receive either MCV (MCV/naïve group) (n = 35) or pneumococcal conjugate vaccine (PCV) (PCV/naïve group) (n = 34). Participants with a history of receiving MPSV were given MCV (MCV/MPSV group) (n = 26). All subjects were challenged 10 months later with one-fifth of the usual dose of MPSV (10 μg of each polysaccharide). Sera were obtained before the conjugate vaccination and before and 7 days after the MPSV challenge and assayed for immunoglobulin G (IgG) anticapsular antibody concentrations and bactericidal titers. The MCV/naïve group had 7- to 10-fold-higher serum IgG and bactericidal responses after the MPSV challenge than the PCV/naïve group (P < 0.001). The increases (n-fold) in anticapsular antibody concentrations in the MCV/naïve group were greatest in subjects with antibody concentrations of ≤2 μg/ml before the challenge (geometric mean increase [n-fold] of 8.3 versus 1.1 in subjects with concentrations of >2 μg/ml before the challenge; P < 0.0001). Only 3 of 11 MCV-vaccinated subjects who had received MPSV before enrollment and who had antibody concentrations of ≤2 μg/ml before the polysaccharide challenge showed more-than-twofold increases in anticapsular antibody concentration or bactericidal titer after the challenge. MCV vaccination of meningococcal vaccine-naïve adults primes for robust memory antibody responses. There was no evidence of induction of memory by MCV in adults previously vaccinated with MPSV.
Vaccine | 2013
Serena Giuntini; David M. Vu; Dan M. Granoff
Meningococci bind human fH to down-regulate complement, which enhances survival of the bacteria in serum. A major fH ligand is the vaccine candidate, factor H-binding protein (fHbp). Although fHbp has been considered an essential meningococcal virulence factor, rarely, invasive isolates with absent fHbp genes or frameshift mutations have been identified. In previous studies fH binding to these isolates was not detected. The aim of the present study was to investigate fH binding and complement evasion by invasive meningococcal serogroup B clinical isolates with absent fHbp genes or frameshift mutations. Four of the seven isolates tested bound human fH by flow cytometry and survived in IgG-depleted human serum. In all four, fH binding was decreased after inactivating the gene encoding NspA. Binding of fH to fHbp and NspA is specific for human fH. To investigate fH-dependent evasion of host defenses, human fH transgenic infant rats, or control littermates negative for human fH, were challenged IP with 10(3)-10(4)CFU of two of the isolates with no detectable fH binding by flow cytometry. At 6h, bacteremia caused by both strains was higher in human fH transgenic rats than in control rats (P<0.002). In conclusion, six of the seven isolates had evidence of fH binding and/or human fH-dependent complement evasion in transgenic rats. In four, NspA was as an alternative fH ligand. fHbp vaccination may select for mutants that do not require fHbp for complement evasion. Inclusion of additional target antigens in vaccines containing fHbp may delay emergence of these mutants.
Infection and Immunity | 2014
Lisa A. Lewis; David M. Vu; Dan M. Granoff; Sanjay Ram
ABSTRACT Neisseria meningitidis utilizes capsular polysaccharide, lipooligosaccharide (LOS) sialic acid, factor H binding protein (fHbp), and neisserial surface protein A (NspA) to regulate the alternative pathway (AP) of complement. Using meningococcal mutants that lacked all four of the above-mentioned molecules (quadruple mutants), we recently identified a role for PorB2 in attenuating the human AP; inhibition was mediated by human fH, a key downregulatory protein of the AP. Previous studies showed that fH downregulation of the AP via fHbp or NspA is specific for human fH. Here, we report that PorB2-expressing quadruple mutants also regulate the AP of baby rabbit and infant rat complement. Blocking a human fH binding region on PorB2 of the quadruple mutant of strain 4243 with a chimeric protein that comprised human fH domains 6 and 7 fused to murine IgG Fc enhanced AP-mediated baby rabbit C3 deposition, which provided evidence for an fH-dependent mechanism of nonhuman AP regulation by PorB2. Using isogenic mutants of strain H44/76 that differed only in their PorB molecules, we confirmed a role for PorB2 in resistance to killing by infant rat serum. The PorB2-expressing strain also caused higher levels of bacteremia in infant rats than its isogenic PorB3-expressing counterpart, thus providing a molecular basis for increased survival of PorB2 isolates in this model. These studies link PorB2 expression with infection of infant rats, which could inform the choice of meningococcal strains for use in animal models, and reveals, for the first time, that PorB2-expressing strains of N. meningitidis regulate the AP of baby rabbits and rats.
Clinical and Vaccine Immunology | 2014
Jutamas Shaughnessy; David M. Vu; Rahi Punjabi; Judit Serra-Pladevall; Rosane B. DeOliveira; Dan M. Granoff; Sanjay Ram
ABSTRACT The emergence of antimicrobial resistance among several medically important pathogens represents a serious threat to human health globally and necessitates the development of novel therapeutics. Complement forms a key arm of innate immune defenses against invading pathogens. A mechanism of complement evasion employed by many pathogens is binding of complement inhibitors, including factor H (FH), a key downregulator of the alternative pathway. Most FH-binding bacteria engage FH through regions in FH spanned by domains 6 and 7 and/or 18 through 20. We created a chimeric protein that comprised human FH domains 6 and 7 fused to human IgG1 Fc (FH6,7/HuFc) and tested its activity as an immunotherapeutic against Neisseria meningitidis, which binds FH through domains 6 and 7. FH6,7/HuFc bound to meningococci and effectively blocked FH binding to bacteria. FH6,7/HuFc enhanced human C3 and C4 deposition and facilitated complement-mediated killing in a dose-responsive manner; complement activation and killing were classical pathway dependent. To investigate in vivo efficacy, infant Wistar rats were treated intraperitoneally (IP) with different doses of FH6,7/HuFc and challenged 2 h later with serogroup C strain 4243 given IP. At 8 to 9 h after the challenge, the FH6,7/HuFc-treated rats had >100-fold fewer CFU per ml of blood than control animals pretreated with phosphate-buffered saline (PBS) or FH18–20/HuFc, which does not bind to meningococci (P < 0.0001). These data provide proof of concept of the utility of FH/Fc fusion proteins as anti-infective immunotherapeutics. Because many microbes share a common binding region(s) in FH, FH/Fc chimeric proteins may be a promising candidate for adjunctive therapy against drug-resistant pathogens.