Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jutamas Shaughnessy is active.

Publication


Featured researches published by Jutamas Shaughnessy.


Journal of Immunology | 2011

A Meningococcal Factor H Binding Protein Mutant That Eliminates Factor H Binding Enhances Protective Antibody Responses to Vaccination

Peter T. Beernink; Jutamas Shaughnessy; Emily M. Braga; Qin Liu; Peter A. Rice; Sanjay Ram; Dan M. Granoff

Certain pathogens recruit host complement inhibitors such as factor H (fH) to evade the immune system. Microbial complement inhibitor-binding molecules can be promising vaccine targets by eliciting Abs that neutralize this microbial defense mechanism. One such Ag, meningococcal factor H-binding protein (fHbp), was used in clinical trials before the protein was discovered to bind fH. The potential effect of fH binding on vaccine immunogenicity had not been assessed in experimental animals because fHbp binds human fH specifically. In this study, we developed a human fH transgenic mouse model. Transgenic mice immunized with fHbp vaccine had 4- to 8-fold lower serum bactericidal Ab responses than those of control mice whose native fH did not bind the vaccine. In contrast, Ab responses were unimpaired in transgenic mice immunized with a control meningococcal group C polysaccharide–protein conjugate vaccine. In transgenic mice, immunization with an fH nonbinding mutant of fHbp elicited Abs with higher bactericidal activity than that of fHbp vaccination itself. Abs elicited by the mutant fHbp more effectively blocked fH binding to wild-type fHbp than Abs elicited by fHbp that bound fH. Thus, a mutant fHbp vaccine that does not bind fH but that retains immunogenicity is predicted to be superior in humans to an fHbp vaccine that binds human fH. In the case of mutant fHbp vaccination, the resultant Ab responses may be directed more at epitopes in or near the fH binding site, which result in greater complement-mediated serum bactericidal activity; these epitopes may be obscured when human fH is bound to the wild-type fHbp vaccine.


Mbio | 2013

Factor H-Dependent Alternative Pathway Inhibition Mediated by Porin B Contributes to Virulence of Neisseria meningitidis

Lisa A. Lewis; David M. Vu; Shreekant Vasudhev; Jutamas Shaughnessy; Dan M. Granoff; Sanjay Ram

ABSTRACT The identification of “factor H binding protein (fHbp)-null” invasive meningococcal isolates and the realization that widespread use of fHbp-based vaccines could herald selection of such strains prompted us to characterize novel mechanisms of alternative pathway (AP) inhibition on meningococci. Of seven strains engineered to lack four known AP-inhibiting molecules, capsular polysaccharide, lipooligosaccharide sialic acid, fHbp, and neisserial surface protein A (quadruple mutants), four strains inhibited human AP-mediated C3 deposition. All four expressed the porin B2 (PorB2) molecule, and three strains belonged to the hypervirulent ST-11 lineage. Consistent with reduced C3 deposition, the rate of C3a generation by a PorB2 isolate was lower than that by a PorB3 strain. Allelic replacement of PorB3 with PorB2, in both encapsulated and unencapsulated strains, confirmed the role of PorB2 in AP inhibition. Expression of PorB2 increased resistance to complement-dependent killing relative to that seen in an isogenic PorB3-expressing strain. Adult rabbit and mouse APs were unimpeded on all mutants, and human fH inhibited nonhuman C3 deposition on PorB2-expressing strains, which provided functional evidence for human fH-dependent AP regulation by PorB2. Low-affinity binding of full-length human fH to quadruple mutants expressing PorB2 was demonstrated. fH-like protein 1 (FHL-1; contains fH domains 1 through 7) and fH domains 6 and 7 fused to IgG Fc bound to one PorB2-expressing quadruple mutant, which suggested that fH domains 6 and 7 may interact with PorB2. These results associate PorB2 expression with serum resistance and presage the appearance of fHbp-null and hypervirulent ST-11 isolates that may evade killing by fHbp-based vaccines. IMPORTANCE The widespread use of antimeningococcal vaccines based on factor H (fH) binding protein (fHbp) is imminent. Meningococci that lack fHbp were recently isolated from persons with invasive disease, and these fHbp-null strains could spawn vaccine failure. Our report provides a molecular basis for an explanation of how fHbp-null strains may evade the host immune system. Meningococci possess several mechanisms to subvert killing by the alternative pathway (AP) of complement, including production of the fHbp and NspA fH binding proteins. Here we show that a meningococcal protein called porin B2 (PorB2) contributes to inhibition of the AP on the bacterial surface. A majority of the “fHbp-null” isolates identified, as well as all members of a “hypervirulent” lineage (called ST-11), express PorB2. Our findings highlight the potential for the emergence of fHbp-negative strains that are able to regulate the AP and may be associated with fHbp vaccine failure. The widespread use of antimeningococcal vaccines based on factor H (fH) binding protein (fHbp) is imminent. Meningococci that lack fHbp were recently isolated from persons with invasive disease, and these fHbp-null strains could spawn vaccine failure. Our report provides a molecular basis for an explanation of how fHbp-null strains may evade the host immune system. Meningococci possess several mechanisms to subvert killing by the alternative pathway (AP) of complement, including production of the fHbp and NspA fH binding proteins. Here we show that a meningococcal protein called porin B2 (PorB2) contributes to inhibition of the AP on the bacterial surface. A majority of the “fHbp-null” isolates identified, as well as all members of a “hypervirulent” lineage (called ST-11), express PorB2. Our findings highlight the potential for the emergence of fHbp-negative strains that are able to regulate the AP and may be associated with fHbp vaccine failure.


PLOS Pathogens | 2012

The effect of human factor H on immunogenicity of meningococcal native outer membrane vesicle vaccines with over-expressed factor H binding protein.

Peter T. Beernink; Jutamas Shaughnessy; Rolando Pajon; Emily M. Braga; Sanjay Ram; Dan M. Granoff

The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH), is fH-binding protein (fHbp), which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV) from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001) and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003). By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002), and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001). Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.


Infection and Immunity | 2009

Functional Comparison of the Binding of Factor H Short Consensus Repeat 6 (SCR 6) to Factor H Binding Protein from Neisseria meningitidis and the Binding of Factor H SCR 18 to 20 to Neisseria gonorrhoeae Porin

Jutamas Shaughnessy; Lisa A. Lewis; Hanna Jarva; Sanjay Ram

ABSTRACT Both Neisseria meningitidis and Neisseria gonorrhoeae recruit the alternative pathway complement inhibitory protein factor H (fH) to their surfaces to evade complement-dependent killing. Meningococci bind fH via fH binding protein (fHbp), a surface-exposed lipoprotein that is subdivided into three variant families based on one classification scheme. Chimeric proteins that comprise contiguous domains of fH fused to murine Fc were used to localize the binding site for all three fHbp variants on fH to short consensus repeat 6 (SCR 6). As expected, fH-like protein 1 (FHL-1), which contains fH SCR 6, also bound to fHbp-expressing meningococci. Using site-directed mutagenesis, we identified histidine 337 and histidine 371 in SCR 6 as important for binding to fHbp. These findings may provide the molecular basis for recent observations that demonstrated human-specific fH binding to meningococci. Differences in the interactions of fHbp variants with SCR 6 were evident. Gonococci bind fH via their porin (Por) molecules (PorB.1A or PorB.1B); sialylation of lipooligosaccharide enhances fH binding. Both sialylated PorB.1B- and (unsialylated) PorB.1A-bearing gonococci bind fH through SCR 18 to 20; PorB.1A can also bind SCR 6, but only weakly, as evidenced by a low level of binding of FHL-1 relative to that of fH. Using isogenic strains expressing either meningococcal fHbp or gonococcal PorB.1B, we discovered that strains expressing gonococcal PorB.1B in the presence of sialylated lipooligosaccharide bound more fH, more effectively limited C3 deposition, and were more serum resistant than their isogenic counterparts expressing fHbp. Differences in fH binding to these two related pathogens may be important for modulating their individual responses to host immune attack.


Infection and Immunity | 2012

Enhanced Bacteremia in Human Factor H Transgenic Rats Infected by Neisseria meningitidis

David M. Vu; Jutamas Shaughnessy; Lisa A. Lewis; Sanjay Ram; Peter A. Rice; Dan M. Granoff

ABSTRACT Neisseria meningitidis binds the complement downregulating protein, factor H (fH), which enables the organism to evade host defenses. Two fH ligands, fHbp and NspA, are known to bind specifically to human fH. We developed a human fH transgenic infant rat model to investigate the effect of human fH on meningococcal bacteremia. At 18 h after intraperitoneal challenge with 560 CFU of group B strain H44/76, all 19 human fH-positive rats had positive blood cultures compared to 0 of 7 human fH-negative control littermates (P < 0.0001). Human fH-positive infant rats also developed bacteremia after challenge with isogenic mutants of H44/76 in which genes encoding fHbp and NspA (ΔfHbp ΔNspA mutant) or the lipooligosaccharide sialyltransferase (Δlst mutant) had been inactivated. A fully encapsulated ΔfHbp ΔNspA Δlst mutant unable to sialylate lipooligosaccharide or bind human fH via the known fH ligands did not cause bacteremia, which argued against global susceptibility to bacteremia resulting from random integration of the transgene into the rat genome. In vitro, the wild-type and ΔfHbp ΔNspA mutant strains were killed by as little as 20% wild-type infant rat serum. The addition of 3 μg of human fH/ml permitted survival of the wild-type strain in up to 60% infant rat serum, whereas ≥33 μg of human fH/ml was required to rescue the ΔfHbp ΔNspA mutant. The ability of meningococci lacking expression of fHbp and NspA to cause invasive disease in human fH transgenic rats and to survive in wild-type infant rat serum supplemented with human fH indicates an additional human fH-dependent mechanism of evasion of innate immunity.


Clinical and Vaccine Immunology | 2010

Impaired immunogenicity of a meningococcal factor H-binding protein vaccine engineered to eliminate factor h binding.

Peter T. Beernink; Jutamas Shaughnessy; Sanjay Ram; Dan M. Granoff

ABSTRACT Meningococcal factor H-binding protein (fHbp) is a promising antigen that is part of two vaccines in clinical development. The protein specifically binds human complement factor H (fH), which downregulates complement activation on the bacterial surface and enables the organism to evade host defenses. In humans, the vaccine antigen forms a complex with fH, which may affect anti-fHbp antibody repertoire and decrease serum bactericidal activity by covering important fHbp epitopes. In a recent study, fHbp residues in contact with fH were identified from a crystal structure. Two fHbp glutamate residues that mediated ion-pair interactions with fH were replaced with alanine, and the resulting E218A/E239A mutant no longer bound the fH fragment. In the present study, we generated the E218A/E239A mutant recombinant protein and confirmed the lack of fH binding. By enzyme-linked immunosorbent assay (ELISA), the mutant fHbp showed similar respective concentration-dependent inhibition of binding of four bactericidal anti-fHbp monoclonal antibodies (MAbs) to fHbp, compared with inhibition by the soluble wild-type protein. In two mouse strains, the mutant fHbp elicited up to 4-fold-lower IgG anti-fHbp antibody titers and up to 20-fold-lower serum bactericidal titers than those elicited by the wild-type fHbp vaccine. Thus, although introduction of the two alanine substitutions to eliminate fH binding did not appear to destabilize the molecule globally, the mutations resulted in decreased immunogenicity in mouse models in which neither the mutant nor the wild-type control vaccine bound fH. These results cast doubt on the vaccine potential in humans of this mutant fHbp.


PLOS Pathogens | 2015

Virulence of Group A Streptococci Is Enhanced by Human Complement Inhibitors.

David Ermert; Jutamas Shaughnessy; Thorsten Joeris; Jakub Kaplan; Catherine Pang; Evelyn A. Kurt-Jones; Peter A. Rice; Sanjay Ram; Anna M. Blom

Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement and consequent phagocytosis. Several strains of GAS bind to human-specific complement inhibitors, C4b-binding protein (C4BP) and/or Factor H (FH), to curtail complement C3 (a critical opsonin) deposition. This results in diminished activation of phagocytes and clearance of GAS that may lead to the host being unable to limit the infection. Herein we describe the course of GAS infection in three human complement inhibitor transgenic (tg) mouse models that examined each inhibitor (human C4BP or FH) alone, or the two inhibitors together (C4BPxFH or ‘double’ tg). GAS infection with strains that bound C4BP and FH resulted in enhanced mortality in each of the three transgenic mouse models compared to infection in wild type mice. In addition, GAS manifested increased virulence in C4BPxFH mice: higher organism burdens and greater elevations of pro-inflammatory cytokines and they died earlier than single transgenic or wt controls. The effects of hu-C4BP and hu-FH were specific for GAS strains that bound these inhibitors because strains that did not bind the inhibitors showed reduced virulence in the ‘double’ tg mice compared to strains that did bind; mortality was also similar in wild-type and C4BPxFH mice infected by non-binding GAS. Our findings emphasize the importance of binding of complement inhibitors to GAS that results in impaired opsonization and phagocytic killing, which translates to enhanced virulence in a humanized whole animal model. This novel hu-C4BPxFH tg model may prove invaluable in studies of GAS pathogenesis and for developing vaccines and therapeutics that rely on human complement activation for efficacy.


Journal of Biological Chemistry | 2011

Molecular Characterization of the Interaction between Sialylated Neisseria gonorrhoeae and Factor H

Jutamas Shaughnessy; Sanjay Ram; Arnab Bhattacharjee; Joana Pedrosa; Connie Tran; Gabor Horvath; Brian G. Monks; Alberto Visintin; T. Sakari Jokiranta; Peter A. Rice

Human factor H (HufH), a key inhibitor of the alternative pathway of complement, binds to Neisseria gonorrhoeae and constitutes an important mechanism of human-specific complement evasion. The C-terminal domain 20 of HufH contains the binding site for sialylated gonococci. We exploited differences in amino acid sequences between human and non-binding chimpanzee fH domain 20 to create cross-species mutations to define amino acids important for binding to sialylated gonococci. We used fH/Fc fusion constructs that contained contiguous fH domains 18–20 fused to Fc fragments of murine IgG2a. The Fc region was used both as a tag for detection of each fusion molecule on the bacterial surface and as an indicator for complement-dependent killing. Arg-1203 was critical for binding to both porin (Por) B.1A and PorB.1B strains. Modeling of the R1203N human-to-chimpanzee mutation using the crystal structure of HufH19–20 as a template showed a loss of positive charge that protrudes at the C terminus of domain 20. We tested the functional importance of Arg-1203 by incubating sialylated gonococci with normal human serum, in the presence of wild-type HufH18–20/Fc or its R1203A mutant. Gonococci bound and were killed by wild-type HufH18–20/Fc but not by the R1203A mutant. A recombinant fH/Fc molecule that contained chimpanzee domain 20, humanized only at amino acid 1203 (N1203R) also bound to sialylated gonococci and restored killing. These findings provide further insights into the species specificity of gonococcal infections and proof-of-concept of a novel therapeutic approach against gonorrhea, a disease rapidly becoming resistant to conventional antibiotics.


Immunobiology | 2016

Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: Lessons from the pathogenic Neisseriae

Sanjay Ram; Jutamas Shaughnessy; Rosane B. DeOliveira; Lisa A. Lewis; Sunita Gulati; Peter A. Rice

Novel therapies are urgently needed to combat the global threat of multidrug-resistant pathogens. Complement forms an important arm of innate defenses against infections. In physiological conditions, complement activation is tightly controlled by soluble and membrane-associated complement inhibitors, but must be selectively activated on invading pathogens to facilitate microbial clearance. Many pathogens, including Neisseria gonorrhoeae and N. meningitidis, express glycans, including N-acetylneuraminic acid (Neu5Ac), that mimic host structures to evade host immunity. Neu5Ac is a negatively charged 9-cabon sugar that inhibits complement, in part by enhancing binding of the complement inhibitor factor H (FH) through C-terminal domains (19 and 20) on FH. Other microbes also bind FH, in most instances through FH domains 6 and 7 or 18-20. Here we describe two strategies to target complement activation on Neisseriae. First, microbial binding domains of FH were fused to IgG Fc to create FH18-20/Fc (binds gonococci) and FH6,7/Fc (binds meningococci). A point mutation in FH domain 19 eliminated hemolysis caused by unmodified FH18-20, but retained binding to gonococci. FH18-20/Fc and FH6,7/Fc mediated complement-dependent killing in vitro and showed efficacy in animal models of gonorrhea and meningococcal bacteremia, respectively. The second strategy utilized CMP-nonulosonate (CMP-NulO) analogs of sialic acid that were incorporated into LOS and prevented complement inhibition by physiologic CMP-Neu5Ac and resulted in attenuated gonococcal infection in mice. While studies to establish the safety of these agents are needed, enhancing complement activation on microbes may represent a promising strategy to treat antimicrobial resistant organisms.


Clinical and Vaccine Immunology | 2014

Fusion Protein Comprising Factor H Domains 6 and 7 and Human IgG1 Fc as an Antibacterial Immunotherapeutic

Jutamas Shaughnessy; David M. Vu; Rahi Punjabi; Judit Serra-Pladevall; Rosane B. DeOliveira; Dan M. Granoff; Sanjay Ram

ABSTRACT The emergence of antimicrobial resistance among several medically important pathogens represents a serious threat to human health globally and necessitates the development of novel therapeutics. Complement forms a key arm of innate immune defenses against invading pathogens. A mechanism of complement evasion employed by many pathogens is binding of complement inhibitors, including factor H (FH), a key downregulator of the alternative pathway. Most FH-binding bacteria engage FH through regions in FH spanned by domains 6 and 7 and/or 18 through 20. We created a chimeric protein that comprised human FH domains 6 and 7 fused to human IgG1 Fc (FH6,7/HuFc) and tested its activity as an immunotherapeutic against Neisseria meningitidis, which binds FH through domains 6 and 7. FH6,7/HuFc bound to meningococci and effectively blocked FH binding to bacteria. FH6,7/HuFc enhanced human C3 and C4 deposition and facilitated complement-mediated killing in a dose-responsive manner; complement activation and killing were classical pathway dependent. To investigate in vivo efficacy, infant Wistar rats were treated intraperitoneally (IP) with different doses of FH6,7/HuFc and challenged 2 h later with serogroup C strain 4243 given IP. At 8 to 9 h after the challenge, the FH6,7/HuFc-treated rats had >100-fold fewer CFU per ml of blood than control animals pretreated with phosphate-buffered saline (PBS) or FH18–20/HuFc, which does not bind to meningococci (P < 0.0001). These data provide proof of concept of the utility of FH/Fc fusion proteins as anti-infective immunotherapeutics. Because many microbes share a common binding region(s) in FH, FH/Fc chimeric proteins may be a promising candidate for adjunctive therapy against drug-resistant pathogens.

Collaboration


Dive into the Jutamas Shaughnessy's collaboration.

Top Co-Authors

Avatar

Sanjay Ram

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Peter A. Rice

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Lisa A. Lewis

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Dan M. Granoff

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunita Gulati

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Peter T. Beernink

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge