Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M. Waisman is active.

Publication


Featured researches published by David M. Waisman.


Molecular and Cellular Biochemistry | 1995

Annexin II tetramer: structure and function

David M. Waisman

The annexins are a family of proteins that bind acidic phospholipids in the presence of Ca2+. The interaction of these proteins with biological membranes has led to the suggestion that these proteins may play a role in membrane trafficking events such as exocytosis, endocytosis and cell-cell adhesion. One member of the annexin family, annexin II, has been shown to exist as a monomer, heterodimer or heterotetramer. The ability of annexin II tetramer to bridge secretory granules to plasma membrane has suggested that this protein may play a role in Ca2+-dependent exocytosis. Annexin II tetramer has also been demonstrated on the extracellular face of some metastatic cells where it mediates the binding of certain metastatic cells to normal cells. Annexin II tetramer is a major cellular substrate of protein kinase C and pp60src. Phosphorylation of annexin II tetramer is a negative modulator of protein function.


Frontiers in Bioscience | 2005

S100A10, annexin A2, and annexin A2 heterotetramer as candidate plasminogen receptors

Mijung Kwon; Travis J. MacLeod; Yi Zhang; David M. Waisman

The defining characteristic of a tumor cell is its ability to escape the constraints imposed by neighboring cells, invade the surrounding tissue and metastasize to distant sites. This invasive property of tumor cells is dependent on activation of proteinases at the cell surface. The serine proteinase plasmin is one of the key proteinases that participate in the pericellular proteolysis associated with the invasive program of tumor cells. The assembly of plasminogen and tissue plasminogen activator at the endothelial cell surface or on the fibrin clot provides a focal point for plasmin generation and therefore plays an important role in maintaining blood fluidity and promoting fibrinolysis. S100A10, a member of the S100 family of Ca2+-binding proteins, is a dimeric protein composed of two 11 kDa subunits. Typically, S100A10 is found in most cells bound to its annexin A2 ligand as the heterotetrameric (S100A10)2(annexin A2)2 complex, AIIt. In addition to an intracellular distribution, S100A10 is present on the extracellular surface of many cells. The carboxyl-terminal lysines of S100A10 bind tPA and plasminogen resulting in the stimulation of tPA-dependent plasmin production. Carboxypeptidases cleave the carboxyl-terminal lysines of S100A10, resulting in a loss of binding and activity. Plasmin binds to S100A10 at a distinct site and the formation of the S100A10-plasmin complex stimulates plasmin autoproteolysis thereby providing a highly localized transient pulse of plasmin activity at the cell surface. The binding of tPA and plasmin to S100A10 also protects against inhibition by physiological inhibitors, PAI-1 and alpha2-antiplasmin, respectively. S100A10 also colocalizes plasminogen with the uPA-uPAR complex thereby localizing and stimulating uPA-dependent plasmin formation to the surface of cancer cells. The loss of S100A10 from the extracellular surface of cancer cells results in a significant loss in plasmin generation. In addition, S100A10 knock-down cells demonstrate a dramatic loss in extracellular matrix degradation and invasiveness as well as reduced metastasis. Annexin A2 plays an important role in plasminogen regulation by controlling the levels of extracellular S100A10 and by acting as a plasmin reductase. The mechanism by which annexin A2 regulates the extracellular levels of S100A10 is unknown. This review highlights the important part that S100A10 plays in plasmin regulation and the role this protein plays in cancer cell invasiveness and metastasis.


Journal of Biological Chemistry | 2004

Annexin A2 is a novel RNA-binding protein.

Nolan R. Filipenko; Travis J. MacLeod; Chang-Soon Yoon; David M. Waisman

Annexin A2 (ANXA2) is a Ca2+-binding protein that is up-regulated in virally transformed cell lines and in human tumors. Here, we show that ANXA2 binds directly to both ribonucleotide homopolymers and human c-myc RNA. ANXA2 was shown to bind specifically to poly(G) with high affinity (Kd = 60 nm) and not to poly(A), poly(C), or poly(U). The binding of ANXA2 to poly(G) required Ca2+ (A50% = 10 μm). The presence of RNA in the immunoprecipitates of ANXA2 isolated from HeLa cells established that ANXA2 formed a ribonucleoprotein complex in vivo. Sucrose gradient analysis showed that ANXA2 associates with ribonucleoprotein complexes and not with polyribosomes. Reverse transcriptase-PCR identified c-myc mRNA as a component of the ribonucleoprotein complex formed by ANXA2 in vivo, and binding studies confirmed a direct interaction between ANXA2 and c-myc mRNA. Transfection of LNCaP cells with the ANXA2 gene resulted in the up-regulation of c-Myc protein. These findings identify ANXA2 as a Ca2+-dependent RNA-binding protein that interacts with the mRNA of the nuclear oncogene, c-myc.


Journal of Biological Chemistry | 2001

The C Terminus of Annexin II Mediates Binding to F-actin

Nolan R. Filipenko; David M. Waisman

Annexin II heterotetramer (AIIt) is a multifunctional Ca2+-binding protein composed of two 11-kDa subunits and two annexin II subunits. The annexin II subunit contains the binding sites for anionic phospholipids, heparin, and F-actin, whereas the p11 subunit provides a regulatory function. The F-actin-binding site is presently unknown. In the present study we have utilized site-directed mutagenesis to create annexin II mutants with truncations in the C terminus of the molecule. Interestingly, a mutant annexin II lacking its C-terminal 16, 13, or 9 amino acids was unable to bind to F-actin but still retained its ability to interact with both anionic phospholipids and heparin. Recombinant AIIt, composed of wild-type p11 subunits and the mutant annexin II subunits, was also unable to bundle F-actin. This loss of F-actin bundling activity was directly attributable to the inability of mutant AIIt to bind F-actin. These results establish for the first time that the annexin II C-terminal amino acid residues, LLYLCGGDD, participate in F-actin binding.


International Journal of Molecular Sciences | 2013

Annexin A2 Heterotetramer: Structure and Function

Alamelu G. Bharadwaj; Moamen Bydoun; Ryan W. Holloway; David M. Waisman

Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.


Blood | 2010

S100A10 regulates plasminogen-dependent macrophage invasion

Alexi P. Surette; Robert S. Liwski; Per Svenningsson; David M. Waisman

The plasminogen activation system plays an integral role in the migration of macrophages in response to an inflammatory stimulus, and the binding of plasminogen to its cell-surface receptor initiates this process. Although previous studies from our laboratory have shown the importance of the plasminogen receptor S100A10 in cancer cell plasmin production, the potential role of this protein in macrophage migration has not been investigated. Using thioglycollate to induce a peritoneal inflammatory response, we demonstrate, for the first time, that compared with wild-type (WT) mice, macrophage migration across the peritoneal membrane into the peritoneal cavity in S100A10-deficient (S100A10(-/-)) mice was decreased by up to 53% at 24, 48, and 72 hours. Furthermore, the number of S100A10-deficient macrophages that infiltrated Matrigel plugs was reduced by 8-fold compared with their WT counterpart in vivo. Compared with WT macrophages, macrophages from S100A10(-/-) mice demonstrated a 50% reduction in plasmin-dependent invasion across a Matrigel barrier and a 45% reduction in plasmin generation in vitro. This loss in plasmin-dependent invasion was in part the result of a decreased generation of plasmin and a decreased activation of pro-MMP-9 by S100A10-deficient macrophages. This study establishes a direct involvement of S100A10 in macrophage recruitment in response to inflammatory stimuli.


Journal of Biological Chemistry | 2004

Regulation of Annexin A2 by Reversible Glutathionylation

Jennifer F. Caplan; Nolan R. Filipenko; Sandra L. Fitzpatrick; David M. Waisman

The annexin A2-S100A10 heterotetramer (AIIt) is a multifunctional Ca2+-dependent, phospholipid-binding, and F-actin-binding phosphoprotein composed of two annexin A2 subunits and two S100A10 subunits. It was reported previously that oxidative stress from exogenous hydrogen peroxide or generated in response to tumor necrosis factor-α results in the glutathionylation of Cys8 of annexin A2. In this study, we demonstrate that AIIt is an oxidatively labile protein whose level of activity is regulated by the redox status of its sulfhydryl groups. Oxidation of AIIt by diamide resulted in a time- and concentration-dependent loss of the ability of AIIt to interact with phospholipid liposomes and F-actin. The inhibitory effect of diamide on the activity of AIIt was partially reversed by dithiothreitol. In addition, incubation of AIIt with diamide and GSH resulted in the glutathionylation of AIIt in vitro. Mass spectrometry established the incorporation of 2 mol of GSH/mol of annexin A2 subunit at Cys8 and Cys132. Glutathionylation potentiated the inhibitory effects of diamide on the activity of AIIt. Furthermore, AIIt could be deglutathionylated by glutaredoxin (thiol transferase). Thus, we show for the first time that AIIt can undergo functional reactivation by glutaredoxin, therefore establishing that AIIt is regulated by reversible glutathionylation.


Blood | 2011

The role of the annexin A2 heterotetramer in vascular fibrinolysis

Patricia A. Madureira; Alexi P. Surette; Kyle D. Phipps; Michael A. S. Taboski; Victoria A. Miller; David M. Waisman

The vascular endothelial cells line the inner surface of blood vessels and function to maintain blood fluidity by producing the protease plasmin that removes blood clots from the vasculature, a process called fibrinolysis. Plasminogen receptors play a central role in the regulation of plasmin activity. The protein complex annexin A2 heterotetramer (AIIt) is an important plasminogen receptor at the surface of the endothelial cell. AIIt is composed of 2 molecules of annexin A2 (ANXA2) bound together by a dimer of the protein S100A10. Recent work performed by our laboratory allowed us to clarify the specific roles played by ANXA2 and S100A10 subunits within the AIIt complex, which has been the subject of debate for many years. The ANXA2 subunit of AIIt functions to stabilize and anchor S100A10 to the plasma membrane, whereas the S100A10 subunit initiates the fibrinolytic cascade by colocalizing with the urokinase type plasminogen activator and receptor complex and also providing a common binding site for both tissue-type plasminogen activator and plasminogen via its C-terminal lysine residue. The AIIt mediated colocalization of the plasminogen activators with plasminogen results in the rapid and localized generation of plasmin to the endothelial cell surface, thereby regulating fibrinolysis.


Journal of Biological Chemistry | 1997

Characterization of the Heparin Binding Properties of Annexin II Tetramer

Geetha Kassam; Akhil Manro; Carol E. Braat; Peter Louie; Sandra L. Fitzpatrick; David M. Waisman

In this report, we have characterized the interaction of heparin with the Ca2+- and phospholipid-binding protein annexin II tetramer (AIIt). Analysis of the circular dichroism spectra demonstrated that the Ca2+-dependent binding of AIIt to heparin caused a large decrease in the α-helical content of AIIt from ∼44 to 31%, a small decrease in the β-sheet content from ∼27 to 24%, and an increase in the unordered structure from 20 to 29%. The binding of heparin also decreased the Ca2+ concentration required for a half-maximal conformational change in AIIt from 360 to 84 μm. AIIt bound to heparin with an apparentK d of 32 ± 6 nm (mean ± S.D., n = 3) and a stoichiometry of 11 ± 0.9 mol of AIIt/mol of heparin (mean ± S.D., n = 3). The binding of heparin to AIIt was specific as other sulfated polysaccharides did not elicit a conformational change in AIIt. A region of the p36 subunit of AIIt (Phe306–Ser313) was found to contain a Cardin-Weintraub consensus sequence for glycosaminoglycan recognition. A peptide to this region underwent a conformational change upon heparin binding. Other annexins contained the Cardin-Weintraub consensus sequence, but did not undergo a substantial conformational change upon heparin binding.


The FASEB Journal | 2003

p11 Regulates extracellular plasmin production and invasiveness of HT1080 fibrosarcoma cells

Kyu-Sil Choi; Darin K. Fogg; Chang-Soon Yoon; David M. Waisman

The defining characteristic of a tumor cell is its ability to escape the constraints imposed by neighboring cells, invade the surrounding tissue, and metastasize to distant sites. This invasive property of tumor cells is dependent on activation of proteases at the cell surface. Most cancer cells secrete the urokinase‐type plasminogen activator, which converts cell‐bound plasminogen to plasmin. Here we address the issue of whether the plasminogen binding protein, p11, plays a significant role in this process. Transfection of human HT1080 fibrosarcoma cells with the human p11 gene in the antisense orientation resulted in a loss of p11 protein from the cell surface and concomitant decreases in cellular plasmin production, ECM degradation, and cellular invasiveness. The transfected cells demonstrated reduced development of lung metastatic foci in SCID mice. In contrast, HT1080 cells transfected with the p11 gene in the sense orientation displayed increased cell surface p11 protein and concomitant increases in cellular plasmin production, as well as enhanced ECM degradation and enhanced cellular invasiveness. The p11 overexpressing cells showed enhanced development of lung metastatic foci. These data establish that changes in the extracellular expression of the plasminogen receptor protein, p11, dramatically affect tumor cell‐mediated pericellular proteolysis.—Choi, K.‐S., Fogg, D. K., Yoon, C. S., Waisman, D. M. p11 regulates extracellular plasmin production and invasiveness of HT1080 fibrosarcoma cells. FASEB J. 17, 235–246 (2003)

Collaboration


Dive into the David M. Waisman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge