Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia A. Madureira is active.

Publication


Featured researches published by Patricia A. Madureira.


Cancer Research | 2006

Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt.

Andrew Sunters; Patricia A. Madureira; Karen M. Pomeranz; Muriel Aubert; Jan J. Brosens; Simon J. Cook; Boudewijn M.T. Burgering; R. Charles Coombes; Eric Lam

The microtubule-targeting compound paclitaxel is often used in the treatment of endocrine-resistant or metastatic breast cancer. We have previously shown that apoptosis of breast cancer cells in response to paclitaxel is mediated by induction of FOXO3a expression, a transcription factor downstream of the phosphatidylinositol-3-kinase/Akt signaling pathway. To further investigate its mechanism of action, we treated MCF-7 cells with paclitaxel and showed a dose-dependent increase in nuclear localization of FOXO3a, which coincided with decreased Akt signaling but increased c-Jun NH2-terminal kinase 1/2 (JNK1/2), p38, and extracellular signal-regulated kinase 1/2 (ERK1/2) activity. Flow cytometry revealed that paclitaxel-induced apoptosis of MCF-7 cells and of other paclitaxel-sensitive breast cancer cell lines was maintained in the presence of inhibitors of p38 (SB203580) or mitogen-activated protein/ERK kinase 1 signaling (PD98059) but abrogated when cells were treated with the JNK1/2 inhibitor SP600125. SP600125 reversed Akt inhibition and abolished FOXO3a nuclear accumulation in response to paclitaxel. Moreover, conditional activation of JNK mimicked paclitaxel activity and led to dephosphorylation of Akt and FOXO3a. Furthermore, mouse embryonic fibroblasts (MEF) derived from JNK1/2 knockout mice displayed very high levels of active Akt, and in contrast to wild-type MEFs, paclitaxel treatment did not alter Akt activity or elicit FOXO3a nuclear translocation. Taken together, the data show that cell death of breast cancer cells in response to paclitaxel is dependent upon JNK activation, resulting in Akt inhibition and increased FOXO3a activity.


Journal of Biological Chemistry | 2006

The Forkhead Box M1 Protein Regulates the Transcription of the Estrogen Receptor α in Breast Cancer Cells

Patricia A. Madureira; Rana Varshochi; Demetra Constantinidou; Richard E. Francis; R. Charles Coombes; Kwok-Ming Yao; Eric Lam

In this study, we have identified the Forkhead transcription factor FoxM1 as a physiological regulator of estrogen receptor α (ERα) expression in breast carcinoma cells. Our survey of a panel of 16 different breast cell lines showed a good correlation (13/16) between FoxM1 expression and expression of ERα at both protein and mRNA levels. We have also demonstrated that ectopic expression of FoxM1 in two different estrogen receptor-positive breast cancer cell lines, MCF-7 and ZR-75–30, led to up-regulation of ERα expression at protein and transcript levels. Furthermore, treatment of MCF-7 cells with the MEK inhibitor U0126, which blocks ERK1/2-dependent activation of FoxM1, also repressed ERα expression. Consistent with this, silencing of FoxM1 expression in MCF-7 cells using small interfering RNA resulted in the almost complete abrogation of ERα expression. We also went on to show that FoxM1 can activate the transcriptional activity of human ERα promoter primarily through two closely located Forkhead response elements located at the proximal region of the ERα promoter. Chromatin immunoprecipitation and biotinylated oligonucleotide pulldown assays have allowed us to confirm these Forkhead response elements as important for FoxM1 binding. Further co-immunoprecipitation experiments showed that FoxO3a and FoxM1 interact in vivo. Together with the chromatin immunoprecipitation and biotinylated oligonucleotide pulldown data, the co-immunoprecipitation results also suggest the possibility that FoxM1 and FoxO3a cooperate to regulate ERα gene transcription.


Blood | 2011

The role of the annexin A2 heterotetramer in vascular fibrinolysis

Patricia A. Madureira; Alexi P. Surette; Kyle D. Phipps; Michael A. S. Taboski; Victoria A. Miller; David M. Waisman

The vascular endothelial cells line the inner surface of blood vessels and function to maintain blood fluidity by producing the protease plasmin that removes blood clots from the vasculature, a process called fibrinolysis. Plasminogen receptors play a central role in the regulation of plasmin activity. The protein complex annexin A2 heterotetramer (AIIt) is an important plasminogen receptor at the surface of the endothelial cell. AIIt is composed of 2 molecules of annexin A2 (ANXA2) bound together by a dimer of the protein S100A10. Recent work performed by our laboratory allowed us to clarify the specific roles played by ANXA2 and S100A10 subunits within the AIIt complex, which has been the subject of debate for many years. The ANXA2 subunit of AIIt functions to stabilize and anchor S100A10 to the plasma membrane, whereas the S100A10 subunit initiates the fibrinolytic cascade by colocalizing with the urokinase type plasminogen activator and receptor complex and also providing a common binding site for both tissue-type plasminogen activator and plasminogen via its C-terminal lysine residue. The AIIt mediated colocalization of the plasminogen activators with plasminogen results in the rapid and localized generation of plasmin to the endothelial cell surface, thereby regulating fibrinolysis.


Blood | 2011

Regulation of fibrinolysis by S100A10 in vivo

Alexi P. Surette; Patricia A. Madureira; Kyle D. Phipps; Victoria A. Miller; Per Svenningsson; David M. Waisman

Endothelial cells form the inner lining of vascular networks and maintain blood fluidity by inhibiting blood coagulation and promoting blood clot dissolution (fibrinolysis). Plasmin, the primary fibrinolytic enzyme, is generated by the cleavage of the plasma protein, plasminogen, by its activator, tissue plasminogen activator. This reaction is regulated by plasminogen receptors at the surface of the vascular endothelial cells. Previous studies have identified the plasminogen receptor protein S100A10 as a key regulator of plasmin generation by cancer cells and macrophages. Here we examine the role of S100A10 and its annexin A2 binding partner in endothelial cell function using a homozygous S100A10-null mouse. Compared with wild-type mice, S100A10-null mice displayed increased deposition of fibrin in the vasculature and reduced clearance of batroxobin-induced vascular thrombi, suggesting a role for S100A10 in fibrinolysis in vivo. Compared with wild-type cells, endothelial cells from S100A10-null mice demonstrated a 40% reduction in plasminogen binding and plasmin generation in vitro. Furthermore, S100A10-deficient endothelial cells demonstrated impaired neovascularization of Matrigel plugs in vivo, suggesting a role for S100A10 in angiogenesis. These results establish an important role for S100A10 in the regulation of fibrinolysis and angiogenesis in vivo, suggesting S100A10 plays a critical role in endothelial cell function.


BioMed Research International | 2012

The Biochemistry and Regulation of S100A10: A Multifunctional Plasminogen Receptor Involved in Oncogenesis

Patricia A. Madureira; Alexi P. Surette; Victoria A. Miller; David M. Waisman

The plasminogen receptors mediate the production and localization to the cell surface of the broad spectrum proteinase, plasmin. S100A10 is a key regulator of cellular plasmin production and may account for as much as 50% of cellular plasmin generation. In parallel to plasminogen, the plasminogen-binding site on S100A10 is highly conserved from mammals to fish. S100A10 is constitutively expressed in many cells and is also induced by many diverse factors and physiological stimuli including dexamethasone, epidermal growth factor, transforming growth factor-α, interferon-γ, nerve growth factor, keratinocyte growth factor, retinoic acid, and thrombin. Therefore, S100A10 is utilized by cells to regulate plasmin proteolytic activity in response to a wide diversity of physiological stimuli. The expression of the oncogenes, PML-RARα and KRas, also stimulates the levels of S100A10, suggesting a role for S100A10 in pathophysiological processes such as in the oncogenic-mediated increases in plasmin production. The S100A10-null mouse model system has established the critical role that S100A10 plays as a regulator of fibrinolysis and oncogenesis. S100A10 plays two major roles in oncogenesis, first as a regulator of cancer cell invasion and metastasis and secondly as a regulator of the recruitment of tumor-associated cells, such as macrophages, to the tumor site.


Blood | 2011

Regulation of S100A10 by the PML-RAR-α oncoprotein.

Patricia A. Madureira; Jason N. Berman; Robert Liwski; David M. Waisman

Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia that results from the expression of the promyelocytic leukemia-retinoic acid receptor α (PML-RAR-α) oncoprotein. It is characterized by severe hemorrhagic complications due in part to excessive fibrinolysis, resulting from the excessive generation of the fibrinolytic enzyme, plasmin, at the cell surface of the PML cells. The treatment of patients with all-trans retinoic acid (ATRA) effectively ameliorates the disease by promoting the destruction of the PML-RAR-α oncoprotein. In the present study we show for the first time that the plasminogen receptor, S100A10, is present on the extracellular surface of APL cells and is rapidly down-regulated in response to all-trans retinoic acid. The loss of S100A10 is concomitant with a loss in fibrinolytic activity. Furthermore, the induced expression of the PML-RAR-α oncoprotein increased the expression of cell surface S100A10 and also caused a dramatic increase in fibrinolytic activity. Depletion of S100A10 by RNA interference effectively blocked the enhanced fibrinolytic activity observed after induction of the PML-RAR-α oncoprotein. These experiments show that S100A10 plays a crucial role in the generation of plasmin leading to fibrinolysis, thus providing a link to the clinical hemorrhagic phenotype of APL.


Journal of Biological Chemistry | 2005

Murine γ-Herpesvirus 68 Latency Protein M2 Binds to Vav Signaling Proteins and Inhibits B-cell Receptor-induced Cell Cycle Arrest and Apoptosis in WEHI-231 B Cells

Patricia A. Madureira; Paulo Matos; Inês Soeiro; Linda K. Dixon; J. Pedro Simas; Eric Lam

The MHV-68 latent protein, M2, does not have homology to any known viral or cellular proteins, and its function is unclear. To define the role played by M2 during MHV-68 latency as well as the molecular mechanism involved, we used M2 as bait to screen a yeast two-hybrid mouse B-cell cDNA library. Vav1 was identified as an M2-interacting protein in two independent screenings. Subsequent yeast two-hybrid interaction studies showed that M2 also binds to Vav2, but not Vav3, and that three “PXXP” motifs located at the C terminus of M2 are important for this interaction. The interactions between M2 and Vav proteins were also confirmed in vivo in 293T and WEHI-231 B-cells by co-immunoprecipitation assays. Rac1/GST-PAK “pull-down” experiments and Western blot analysis using a phospho-Vav antibody demonstrated that expression of M2 in WEHI-231 cells enhances Vav activity. We further showed in WEHI-231 cells that M2 expression promotes proliferation and survival and is associated with enhanced cyclin D2 and repressed p27Kip1, p130, and Bim expression. Taken together, these experiments suggest that M2 might have an important role in disseminating the latent virus during the establishment and maintenance of latency by modulating B-cell receptor-mediated signaling events through Vav to promote B-cell activation, proliferation, and survival.


Cell Death and Disease | 2013

Gemcitabine-mediated tumour regression and p53-dependent gene expression: implications for colon and pancreatic cancer therapy.

Richard Hill; M Rabb; Patricia A. Madureira; Derek Clements; Shashi Gujar; David M. Waisman; Carman A. Giacomantonio; P W K Lee

Gemcitabine is a chemotherapeutic that is widely used for the treatment of a variety of haematological malignancies and has become the standard chemotherapy for the treatment of advanced pancreatic cancer. Combinational gemcitabine regimes (e.g.with doxorubicin) are being tested in clinical trials to treat a variety of cancers, including colon cancer. The limited success of these trials has prompted us to pursue a better understanding of gemcitabine’s mechanism of cell killing, which could dramatically improve the therapeutic potential of this agent. For comparison, we included gamma irradiation that triggers robust cell cycle arrest and Cr(VI), which is a highly toxic chemical that induces a robust p53-dependent apoptotic response. Gemcitabine induced a potent p53-dependent apoptosis that correlated with the accumulation of pro-apoptotic proteins such as PUMA and Bax. This is accompanied by a drastic reduction in p2l and 14-3-3σ protein levels, thereby significantly sensitizing the cells to apoptosis. In vitro and in vivo studies demonstrated that gemcitabine required PUMA transcription to instigate an apoptotic programme. This was in contrast to Cr(VI)-induced apoptosis that required Bax and was independent of transcription. An examination of clinical colon and pancreatic cancer tissues shows higher p53, p21, 14-3-3σ and Bax expression compared with matched normal tissues, yet there is a near absence of PUMA protein. This may explain why gemcitabine shows only limited efficacy in the treatment of these cancers. Our results raise the possibility that targeting the Bax-dependent cell death pathway, rather than the PUMA pathway, could result in significantly improved patient outcome and prognosis for these cancers.


DNA Repair | 2008

Chromium-mediated apoptosis: involvement of DNA-dependent protein kinase (DNA-PK) and differential induction of p53 target genes

Richard Hill; Andrew M. Leidal; Patricia A. Madureira; Laura D. Gillis; David M. Waisman; Arthur Chiu; Patrick W.K. Lee

Cellular stress and DNA damage up-regulate and activate p53, fundamental for cell cycle control, senescence, DNA repair and apoptosis. The specific mechanism(s) that determine whether p53-dependent cell cycle arrest or p53-dependent apoptosis prevails in response to specific DNA damage are poorly understood. In this study, we investigated two types of DNA damage, chromium treatment and gamma irradiation (IR) that induced similar levels of p53, but that mediated two distinct p53-dependent cell fates. Chromium exposure induced a robust DNA-dependent protein kinase (DNA-PK)-mediated apoptotic response that was accompanied by the rapid loss of the cyclin-dependent kinase inhibitor 1A (p21) protein, whereas IR treatment-induced cell cycle arrests that was supported by the rapid induction of p21. Inhibition of DNA-PK effectively blocked chromium-, but not IR-induced p53 stabilization and activation. In contrast, inhibition of ATM and ATR by caffeine had the inverse effect of blocking IR-, but not chromium-induced p53 stabilization and activation. Chromium exposure ablated p21 transcription but PUMA and Bax transcription was significantly enhanced compared to non-damaged cells. In contrast, IR treatment triggered significant p21 mRNA synthesis in addition to PUMA and Bax mRNA production. While chromium treatment enhanced the binding of p53 and RNA polymerase II (RNA Pol II) to both the p21 and PUMA promoters, RNA Pol II elongation was only observed along the PUMA gene and not the p21 gene. In contrast, following IR treatment, RNA Pol II elongation was observed on both p21 and PUMA. Chromium-induced apoptosis therefore involves DNA-PK-mediated p53 activation followed by preferential transcription of pro-apoptotic PUMA over anti-apoptotic p21 genes.


International Journal of Molecular Sciences | 2013

Annexin A2: The Importance of Being Redox Sensitive

Patricia A. Madureira; David M. Waisman

Hydrogen peroxide (H2O2) is an important second messenger in cellular signal transduction. H2O2-dependent signalling regulates many cellular processes, such as proliferation, differentiation, migration and apoptosis. Nevertheless, H2O2 is an oxidant and a major contributor to DNA damage, protein oxidation and lipid peroxidation, which can ultimately result in cell death and/or tumourigenesis. For this reason, cells have developed complex antioxidant systems to scavenge ROS. Recently, our laboratory identified the protein, annexin A2, as a novel cellular redox regulatory protein. Annexin A2 possesses a reactive cysteine residue (Cys-8) that is readily oxidized by H2O2 and subsequently reduced by the thioredoxin system, thereby enabling annexin A2 to participate in multiple redox cycles. Thus, a single molecule of annexin A2 can inactivate several molecules of H2O2. In this report, we will review the studies detailing the reactivity of annexin A2 thiols and the importance of these reactive cysteine(s) in regulating annexin A2 structure and function. We will also focus on the recent reports that establish novel functions for annexin A2, namely as a protein reductase and as a cellular redox regulatory protein. We will further discuss the importance of annexin A2 redox regulatory function in disease, with a particular focus on tumour progression.

Collaboration


Dive into the Patricia A. Madureira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Lam

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge