David Mackenzie
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Mackenzie.
Marine Pollution Bulletin | 2015
Robin Lenz; Kristina Enders; Colin A. Stedmon; David Mackenzie; Torkel Gissel Nielsen
Identification and characterisation of microplastic (MP) is a necessary step to evaluate their concentrations, chemical composition and interactions with biota. MP ≥10μm diameter filtered from below the sea surface in the European and subtropical North Atlantic were simultaneously identified by visual microscopy and Raman micro-spectroscopy. Visually identified particles below 100μm had a significantly lower percentage confirmed by Raman than larger ones indicating that visual identification alone is inappropriate for studies on small microplastics. Sixty-eight percent of visually counted MP (n=1279) were spectroscopically confirmed being plastic. The percentage varied with type, colour and size of the MP. Fibres had a higher success rate (75%) than particles (64%). We tested Raman micro-spectroscopy applicability for MP identification with respect to varying chemical composition (additives), degradation state and organic matter coating. Partially UV-degraded post-consumer plastics provided identifiable Raman spectra for polymers most common among marine MP, i.e. polyethylene and polypropylene.
Nano Research | 2014
Alberto Cagliani; David Mackenzie; Lisa Katharina Tschammer; Filippo Pizzocchero; Kristoffer Almdal; Peter Bøggild
AbstractChemical vapor deposited (CVD) graphene is nanopatterned using a spherical block copolymer etch mask. The use of spherical rather than cylindrical block copolymers allows homogeneous patterning of cm-scale areas without any substrate surface treatment. Raman spectroscopy was used to study the controlled generation of point defects in the graphene lattice with increasing etching time, confirming that alongside the nanomesh patterning, the nanopatterned CVD graphene presents a high defect density between the mesh holes. The nanopatterned samples showed sensitivities for NO2 of more than one order of magnitude higher than for non-patterned graphene. NO2 concentrations as low as 300 ppt were detected with an ultimate detection limit of tens of ppt. This is the smallest value reported so far for non-UV illuminated graphene chemiresistive NO2 gas sensors. The dramatic improvement in the gas sensitivity is believed to be due to the high adsorption site density, thanks to the combination of edge sites and point defect sites. This work opens the possibility of large area fabrication of nanopatterned graphene with extremely high densities of adsorption sites for sensing applications.
2D Materials | 2014
Lene Gammelgaard; José M. Caridad; Alberto Cagliani; David Mackenzie; Dirch Hjorth Petersen; Tim Booth; Peter Bøggild
The evolution of grapheneʼs electrical transport properties due to processing with the polymer polymethyl methacrylate (PMMA) and heat are examined in this study. The use of stencil (shadow mask) lithography enables fabrication of graphene devices without the usage of polymers, chemicals or heat, allowing us to measure the evolution of the electrical transport properties during individual processing steps from the initial as-exfoliated to the PMMA-processed graphene. Heating generally promotes the conformation of graphene to SiO2 and is found to play a major role for the electrical properties of graphene while PMMA residues are found to be surprisingly benign. In accordance with this picture, graphene devices with initially high carrier mobility tend to suffer a decrease in carrier mobility, while in contrast an improvement is observed for low carrier mobility devices. We explain this by noting that flakes conforming poorly to the substrate will have a higher carrier mobility which will however be reduced as heat treatment enhance the conformation. We finally show the electrical properties of graphene to be reversible upon heat treatments in air up to 200 °C.
2D Materials | 2015
David Mackenzie; Jonas Christian Due Buron; Patrick Rebsdorf Whelan; Bjarke Sørensen Jessen; Adnan Silajdźić; Amaia Pesquera; Alba Centeno; Amaia Zurutuza; Peter Bøggild; Dirch Hjorth Petersen
Selective laser ablation of a wafer-scale graphene film is shown to provide flexible, high speed (1 wafer/hour) device fabrication while avoiding the degradation of electrical properties associated with traditional lithographic methods. Picosecond laser pulses with single pulse peak fluences of 140 mJ cm−2 for 1064 nm, 40 mJ cm−2 for 532 nm, and 30 mJ cm−2 for 355 nm are sufficient to ablate the graphene film, while the ablation onset for Si/SiO2 (thicknesses 500 μm/302 nm) did not occur until 240 mJ cm−2, 150 mJ cm−2, and 135 mJ cm−2, respectively, allowing all wavelengths to be used for graphene ablation without detectable substrate damage. Optical microscopy and Raman Spectroscopy were used to assess the ablation of graphene, while stylus profilometery indicated that the SiO2 substrate was undamaged. CVD graphene devices were electrically characterized and showed comparable field-effect mobility, doping level, on–off ratio, and conductance minimum before and after laser ablation fabrication.
Nature | 2017
Tue Hassenkam; Martin Andersson; K. N. Dalby; David Mackenzie; Minik T. Rosing
Metasedimentary rocks from Isua, West Greenland (over 3,700 million years old) contain 13C-depleted carbonaceous compounds, with isotopic ratios that are compatible with a biogenic origin. Metamorphic garnet crystals in these rocks contain trails of carbonaceous inclusions that are contiguous with carbon-rich sedimentary beds in the host rock, where carbon is fully graphitized. Previous studies have not been able to document other elements of life (mainly hydrogen, oxygen, nitrogen and phosphorus) structurally bound to this carbonaceous material. Here we study carbonaceous inclusions armoured within garnet porphyroblasts, by in situ infrared absorption on approximately 10−21 m3 domains within these inclusions. We show that the absorption spectra are consistent with carbon bonded to nitrogen and oxygen, and probably also to phosphate. The levels of C–H or O–H bonds were found to be low. These results are consistent with biogenic organic material isolated for billions of years and thermally matured at temperatures of around 500 °C. They therefore provide spatial characterization for potentially the oldest biogenic carbon relics in Earth’s geological record. The preservation of Eoarchean organic residues within sedimentary material corroborates earlier claims for the biogenic origins of carbon in Isua metasediments.
Optics Express | 2015
Jonas Christian Due Buron; David Mackenzie; Dirch Hjorth Petersen; Amaia Pesquera; Alba Centeno; Peter Bøggild; Amaia Zurutuza; Peter Uhd Jepsen
We demonstrate wafer-scale, non-contact mapping of essential carrier transport parameters, carrier mobility (µdrift), carrier density (Ns), DC sheet conductance (σdc), and carrier scattering time (τsc) in CVD graphene, using spatially resolved terahertz time-domain conductance spectroscopy. σdc and τsc are directly extracted from Drude model fits to terahertz conductance spectra obtained in each pixel of 10 × 10 cm2 maps with a 400 µm step size. σdc- and τsc-maps are translated into µdrift and Ns maps through Boltzmann transport theory for graphene charge carriers and these parameters are directly compared to van der Pauw device measurements on the same wafer. The technique is compatible with all substrate materials that exhibit a reasonably low absorption coefficient for terahertz radiation. This includes many materials used for transferring CVD graphene in production facilities as well as in envisioned products, such as polymer films, glass substrates, cloth, or paper substrates.
Nano Research | 2017
David Mackenzie; Jonas Christian Due Buron; Patrick Rebsdorf Whelan; José M. Caridad; Martin Bjergfelt; Birong Luo; Abhay Shivayogimath; Anne Lyck Smitshuysen; Joachim Dahl Thomsen; Tim Booth; Lene Gammelgaard; Johanna Zultak; Bjarke Sørensen Jessen; Peter Bøggild; Dirch Hjorth Petersen
With the increasing availability of large-area graphene, the ability to rapidly and accurately assess the quality of the electrical properties has become critically important. For practical applications, spatial variability in carrier density and carrier mobility must be controlled and minimized. We present a simple framework for assessing the quality and homogeneity of large-area graphene devices. The field effect in both exfoliated graphene devices encapsulated in hexagonal boron nitride and chemical vapor-deposited (CVD) devices was measured in dual current–voltage configurations and used to derive a single, gate-dependent effective shape factor, β, for each device. β is a sensitive indicator of spatial homogeneity that can be obtained from samples of arbitrary shape. All 50 devices investigated in this study show a variation (up to tenfold) in β as a function of the gate bias. Finite element simulations suggest that spatial doping inhomogeneity, rather than mobility inhomogeneity, is the primary cause of the gate dependence of β, and that measurable variations of β can be caused by doping variations as small as 1010 cm−2. Our results suggest that local variations in the position of the Dirac point alter the current flow and thus the effective sample shape as a function of the gate bias. We also found that such variations lead to systematic errors in carrier mobility calculations, which can be revealed by inspecting the corresponding β factor.
Scientific Reports | 2017
Miriam Galbiati; Adam Carsten Stoot; David Mackenzie; Peter Bøggild; Luca Camilli
Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.
npj 2D Materials and Applications | 2017
Naveen Kaushik; David Mackenzie; Kartikey Thakar; Natasha Goyal; Bablu Mukherjee; Peter Bøggild; Dirch Hjorth Petersen; Saurabh Lodha
The origin of threshold voltage instability with gate voltage in MoS2 transistors is poorly understood but critical for device reliability and performance. Reversibility of the temperature dependence of hysteresis and its inversion with temperature in MoS2 transistors has not been demonstrated. In this work, we delineate two independent mechanisms responsible for thermally assisted hysteresis inversion in gate transfer characteristics of contact resistance-independent multilayer MoS2 transistors. Variable temperature hysteresis measurements were performed on gated four-terminal van der Pauw and two-terminal devices of MoS2 on SiO2. Additional hysteresis measurements on suspended (~100 nm air gap between MoS2 and SiO2) transistors and under different ambient conditions (vacuum/nitrogen) were used to further isolate the mechanisms. Clockwise hysteresis at room temperature (300 K) that decreases with increasing temperature is shown to result from intrinsic defects/traps in MoS2. At higher temperatures a second, independent mechanism of charge trapping and de-trapping between the oxide and p+ Si gate leads to hysteresis collapse at ~350 K and anti-clockwise hysteresis (inversion) for temperatures >350 K. The intrinsic-oxide trap model has been corroborated through device simulations. Further, pulsed current–voltage (I–V) measurements were carried out to extract the trap time constants at different temperatures. Non-volatile memory and temperature sensor applications exploiting temperature dependent hysteresis inversion and its reversibility in MoS2 transistors have also been demonstrated.MoS 2 devices: variable temperature measurements unveil reversible hysteresis mechanismsDefects and traps in MoS2 van der Pauw devices give rise to a hysteresis inversion mechanism which is reversible with temperature. A team led by Saurabh Lodha at the Indian Institute of Technology Bombay performed variable temperature hysteresis measurements on four- and two-terminal MoS2 devices, both suspended and supported on a SiO2 substrate. The onset of a clockwise hysteresis at room temperature was attributed to intrinsic MoS2 defects, whereas an additional mechanism resulting in an anticlockwise hysteresis was observed at higher temperature, and attributed to extrinsic charge trapping and de-trapping between the oxide and the silicon gate. By leveraging the temperature dependence of the hysteresis in MoS2, the authors developed a non-volatile memory and a temperature sensor.
International Journal of Nanotechnology | 2017
David Mackenzie; Alberto Cagliani; Lene Gammelgaard; Bjarke Sørensen Jessen; Dirch Hjorth Petersen; Peter Bøggild
We investigate graphene devices patterned with a narrow band of holes perpendicular to the current flow, a few-row graphene antidot lattice (FR-GAL). Theoretical reports suggest that a FR-GAL can have a bandgap with a relatively small reduction of the transmission compared to what is typical for antidot arrays devices. Graphene devices were fabricated using 100 keV electron beam lithography (EBL) for nanopatterning as well as for defining electrical contacts. Patterns with hole diameter and neck widths of order 30 nm were produced, which is the highest reported pattern density of antidot lattices in graphene reported defined by EBL. Electrical measurements showed that devices with one and five rows exhibited field effect mobility of ∼100 cm2/Vs, while a larger number of rows, around 40, led to a significant reduction of field effect mobility (<5 cm2/Vs). The carrier mobility was measured as a function of temperature, with the low-temperature behaviour being well described by variable range hopping, indicating the transport to be dominated by disorder.