Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Rebsdorf Whelan is active.

Publication


Featured researches published by Patrick Rebsdorf Whelan.


2D Materials | 2015

Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization

David Mackenzie; Jonas Christian Due Buron; Patrick Rebsdorf Whelan; Bjarke Sørensen Jessen; Adnan Silajdźić; Amaia Pesquera; Alba Centeno; Amaia Zurutuza; Peter Bøggild; Dirch Hjorth Petersen

Selective laser ablation of a wafer-scale graphene film is shown to provide flexible, high speed (1 wafer/hour) device fabrication while avoiding the degradation of electrical properties associated with traditional lithographic methods. Picosecond laser pulses with single pulse peak fluences of 140 mJ cm−2 for 1064 nm, 40 mJ cm−2 for 532 nm, and 30 mJ cm−2 for 355 nm are sufficient to ablate the graphene film, while the ablation onset for Si/SiO2 (thicknesses 500 μm/302 nm) did not occur until 240 mJ cm−2, 150 mJ cm−2, and 135 mJ cm−2, respectively, allowing all wavelengths to be used for graphene ablation without detectable substrate damage. Optical microscopy and Raman Spectroscopy were used to assess the ablation of graphene, while stylus profilometery indicated that the SiO2 substrate was undamaged. CVD graphene devices were electrically characterized and showed comparable field-effect mobility, doping level, on–off ratio, and conductance minimum before and after laser ablation fabrication.


Journal of Physics D | 2015

Facile electrochemical transfer of large-area single crystal epitaxial graphene from Ir(1 1 1)

Line Koefoed; Mikkel Kongsfelt; Søren Ulstrup; Antonija Grubišić Čabo; Andrew Cassidy; Patrick Rebsdorf Whelan; Marco Bianchi; Maciej Dendzik; Filippo Pizzocchero; Bjarke Jørgensen; Peter Bøggild; Liv Hornekær; Philip Hofmann; Steen Uttrup Pedersen; Kim Daasbjerg

High-quality growth of graphene and subsequent reliable transfer to insulating substrates are needed for various technological applications, such as flexible screens and high speed electronics. In this paper, we present a new electrochemical method for the transfer of large-area, high-quality single crystalline graphene from Ir(1 1 1) to Si/SiO2 under ambient conditions. The method is based on intercalation of tetraoctylammonium ions between the graphene layer and the Ir surface. This simple technique allows transfer of graphene single crystals having the same size as the substrate they are grown on (diameter ≈7 mm). In addition, the substrate can be reused for further growth cycles. A detailed Raman map analysis of the transferred graphene reveals straight lines, in which the Raman peaks characteristic for graphene are shifted. These lines originate from scratches in the Ir(1 1 1) crystal introduced by the polishing procedure. Furthermore, areas with numerous wrinkles exist inbetween these lines, forming a network across the entire graphene crystal. Hence, the initial characteristics and imprints left on the sheet of graphene in terms of strain and wrinkles from the growth process remain after transfer.


Nano Research | 2017

Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements

David Mackenzie; Jonas Christian Due Buron; Patrick Rebsdorf Whelan; José M. Caridad; Martin Bjergfelt; Birong Luo; Abhay Shivayogimath; Anne Lyck Smitshuysen; Joachim Dahl Thomsen; Tim Booth; Lene Gammelgaard; Johanna Zultak; Bjarke Sørensen Jessen; Peter Bøggild; Dirch Hjorth Petersen

With the increasing availability of large-area graphene, the ability to rapidly and accurately assess the quality of the electrical properties has become critically important. For practical applications, spatial variability in carrier density and carrier mobility must be controlled and minimized. We present a simple framework for assessing the quality and homogeneity of large-area graphene devices. The field effect in both exfoliated graphene devices encapsulated in hexagonal boron nitride and chemical vapor-deposited (CVD) devices was measured in dual current–voltage configurations and used to derive a single, gate-dependent effective shape factor, β, for each device. β is a sensitive indicator of spatial homogeneity that can be obtained from samples of arbitrary shape. All 50 devices investigated in this study show a variation (up to tenfold) in β as a function of the gate bias. Finite element simulations suggest that spatial doping inhomogeneity, rather than mobility inhomogeneity, is the primary cause of the gate dependence of β, and that measurable variations of β can be caused by doping variations as small as 1010 cm−2. Our results suggest that local variations in the position of the Dirac point alter the current flow and thus the effective sample shape as a function of the gate bias. We also found that such variations lead to systematic errors in carrier mobility calculations, which can be revealed by inspecting the corresponding β factor.


Scientific Reports | 2017

Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion

Nabin Aryal; Arnab Halder; Minwei Zhang; Patrick Rebsdorf Whelan; Pier-Luc Tremblay; Qijin Chi; Tian Zhang

During microbial electrosynthesis (MES) driven CO2 reduction, cathode plays a vital role by donating electrons to microbe. Here, we exploited the advantage of reduced graphene oxide (RGO) paper as novel cathode material to enhance electron transfer between the cathode and microbe, which in turn facilitated CO2 reduction. The acetate production rate of Sporomusa ovata-driven MES reactors was 168.5 ± 22.4 mmol m−2 d−1 with RGO paper cathodes poised at −690 mV versus standard hydrogen electrode. This rate was approximately 8 fold faster than for carbon paper electrodes of the same dimension. The current density with RGO paper cathodes of 2580 ± 540 mA m−2 was increased 7 fold compared to carbon paper cathodes. This also corresponded to a better cathodic current response on their cyclic voltammetric curves. The coulombic efficiency for the electrons conversion into acetate was 90.7 ± 9.3% with RGO paper cathodes and 83.8 ± 4.2% with carbon paper cathodes, respectively. Furthermore, more intensive cell attachment was observed on RGO paper electrodes than on carbon paper electrodes with confocal laser scanning microscopy and scanning electron microscopy. These results highlight the potential of RGO paper as a promising cathode for MES from CO2.


Optics Express | 2017

Robust mapping of electrical properties of graphene from terahertz time-domain spectroscopy with timing jitter correction

Patrick Rebsdorf Whelan; Krzysztof Iwaszczuk; Ruizhi Wang; Stephan Hofmann; Peter Bøggild; Peter Uhd Jepsen

We demonstrate a method for reliably determining the electrical properties of graphene including the carrier scattering time and carrier drift mobility from terahertz time- domain spectroscopy measurements (THz-TDS). By comparing transients originating from directly transmitted pulses and the echoes from internal reflections in a substrate, we are able to extract electrical properties irrespective of random time delays between pulses emitted in a THz-TDS setup. If such time delays are not accounted for they can significantly influence the extracted properties of the material. The technique is useful for a robust determination of electrical properties from THz-TDS measurements and is compatible with substrate materials where transients from internal reflections are well-separated in time.


Carbon | 2017

Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials

Patrick Rebsdorf Whelan; Bjarke Sørensen Jessen; Ruizhi Wang; Birong Luo; Adam Carsten Stoot; David Mackenzie; Philipp Braeuninger-Weimer; Alex Jouvray; Lutz Prager; Luca Camilli; Stephan Hofmann; Peter Bøggild; Tim Booth

Through a combination of monitoring the Raman spectral characteristics of 2D materials grown on copper catalyst layers, and wafer scale automated detection of the fraction of transferred material, we reproducibly achieve transfers with over 97.5% monolayer hexagonal boron nitride and 99.7% monolayer graphene coverage, for up to 300 mm diameter wafers. We find a strong correlation between the transfer coverage obtained for graphene and the emergence of a lower wavenumber 2D− peak component, with the concurrent disappearance of the higher wavenumber 2D+ peak component during oxidation of the catalyst surface. The 2D peak characteristics can therefore act as an unambiguous predictor of the success of the transfer. The combined monitoring and transfer process presented here is highly scalable and amenable for roll-to-roll processing.


Scientific Reports | 2018

Quantitative optical mapping of two-dimensional materials

Bjarke Sørensen Jessen; Patrick Rebsdorf Whelan; David Mackenzie; Birong Luo; Joachim Dahl Thomsen; Lene Gammelgaard; Tim Booth; Peter Bøggild

The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image features with similar contrast, efforts towards fast and reliable automated assignments schemes is essential. We show that by modelling the expected 2DM contrast in digitally captured images, we can automatically identify candidate regions of 2DM. More importantly, we show a computationally-light machine vision strategy for eliminating false-positives from this set of 2DM candidates through the combined use of binary thresholding, opening and closing filters, and shape-analysis from edge detection. Calculation of data pyramids for arbitrarily high-resolution optical coverage maps of two-dimensional materials produced in this way allows the real-time presentation and processing of this image data in a zoomable interface, enabling large datasets to be explored and analysed with ease. The result is that a standard optical microscope with CCD camera can be used as an analysis tool able to accurately determine the coverage, residue/contamination concentration, and layer number for a wide range of presented 2DMs.


Nano Letters | 2018

Scalable and Tunable Periodic Graphene Nanohole Arrays for Mid-Infrared Plasmonics

Kavitha K. Gopalan; Bruno Paulillo; David Mackenzie; Daniel Rodrigo; Nestor Bareza; Patrick Rebsdorf Whelan; Abhay Shivayogimath; Valerio Pruneri

Despite its great potential for a wide variety of devices, especially mid-infrared biosensors and photodetectors, graphene plasmonics is still confined to academic research. A major reason is the fact that, so far, expensive and low-throughput lithography techniques are needed to fabricate graphene nanostructures. Here, we report for the first time a detailed experimental study on electrostatically tunable graphene nanohole array surfaces with periods down to 100 nm, showing clear plasmonic response in the range ∼1300-1600 cm-1, which can be fabricated by a scalable nanoimprint technique. Such large area plasmonic nanostructures are suitable for industrial applications, for example, surface-enhanced infrared absorption (SEIRA) sensing, as they combine easy design, extreme field confinement, and the possibility to excite multiple plasmon modes enabling multiband sensing, a feature not readily available in nanoribbons or other localized resonant structures.


ACS Applied Materials & Interfaces | 2018

Nondestructive Thickness Mapping of Wafer-Scale Hexagonal Boron Nitride Down to a Monolayer

Andrea Crovetto; Patrick Rebsdorf Whelan; Ruizhi Wang; Miriam Galbiati; Stephan Hofmann; Luca Camilli

The availability of an accurate, nondestructive method for measuring thickness and continuity of two-dimensional (2D) materials with monolayer sensitivity over large areas is of pivotal importance for the development of new applications based on these materials. While simple optical contrast methods and electrical measurements are sufficient for the case of metallic and semiconducting 2D materials, the low optical contrast and high electrical resistivity of wide band gap dielectric 2D materials such as hexagonal boron nitride (hBN) hamper their characterization. In this work, we demonstrate a nondestructive method to quantitatively map the thickness and continuity of hBN monolayers and bilayers over large areas. The proposed method is based on acquisition and subsequent fitting of ellipsometry spectra of hBN on Si/SiO2 substrates. Once a proper optical model is developed, it becomes possible to identify and map the commonly observed polymer residuals from the transfer process and obtain submonolayer thickness sensitivity for the hBN film. With some assumptions on the optical functions of hBN, the thickness of an as-transferred hBN monolayer on SiO2 is measured as 4.1 Å ± 0.1 Å, whereas the thickness of an air-annealed hBN monolayer on SiO2 is measured as 2.5 Å ± 0.1 Å. We argue that the difference in the two measured values is due to the presence of a water layer trapped between the SiO2 surface and the hBN layer in the latter case. The procedure can be fully automated to wafer scale and extended to other 2D materials transferred onto any polished substrate, as long as their optical functions are approximately known.


ACS Applied Materials & Interfaces | 2018

Electrical Homogeneity Mapping of Epitaxial Graphene on Silicon Carbide

Patrick Rebsdorf Whelan; Vishal Panchal; Dirch Hjorth Petersen; David Mackenzie; Christos Melios; Iwona Pasternak; John C. Gallop; Frederik Westergaard Østerberg; Peter Uhd Jepsen; Wlodek Strupinski; Olga Kazakova; Peter Bøggild

Epitaxial graphene is a promising route to wafer-scale production of electronic graphene devices. Chemical vapor deposition of graphene on silicon carbide offers epitaxial growth with layer control but is subject to significant spatial and wafer-to-wafer variability. We use terahertz time-domain spectroscopy and micro four-point probes to analyze the spatial variations of quasi-freestanding bilayer graphene grown on 4 in. silicon carbide (SiC) wafers and find significant variations in electrical properties across large regions, which are even reproduced across graphene on different SiC wafers cut from the same ingot. The dc sheet conductivity of epitaxial graphene was found to vary more than 1 order of magnitude across a 4 in. SiC wafer. To determine the origin of the variations, we compare different optical and scanning probe microscopies with the electrical measurements from nano- to millimeter scale and identify three distinct qualities of graphene, which can be attributed to the microstructure of the SiC surface.

Collaboration


Dive into the Patrick Rebsdorf Whelan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Mackenzie

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Tim Booth

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Peter Uhd Jepsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Bjarke Sørensen Jessen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Dirch Hjorth Petersen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Birong Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Abhay Shivayogimath

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joachim Dahl Thomsen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge