David Manzano
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Manzano.
FEBS Letters | 2000
Núria Cunillera; Montserrat Arró; Oriol Forés; David Manzano; Albert Ferrer
The enzyme dehydrodolichyl diphosphate (dedol‐PP) synthase is a cis‐prenyltransferase that catalyzes the synthesis of dedol‐PP, the long‐chain polyprenyl diphosphate used as a precursor for the synthesis of dolichyl phosphate. Here we report the cloning and characterization of a cDNA from Arabidopsis thaliana encoding dedol‐PP synthase. The identity of the cloned enzyme was confirmed by functional complementation of a yeast mutant strain defective in dedol‐PP synthase activity together with the detection of high levels of dedol‐PP synthase activity in the transformed yeast mutant. The A. thaliana dedol‐PP synthase mRNA was detected at high levels in roots but was hardly detected in flowers, leaves, stems and in A. thaliana suspension‐cultured cells.
Phytochemistry | 2014
Kathleen Brückner; Dragana Božić; David Manzano; Dimitra Papaefthimiou; Irini Pateraki; Ulschan Scheler; Albert Ferrer; Ric C. H. de Vos; Angelos K. Kanellis; Alain Tissier
Rosemary (Rosmarinus officinalis) produces the phenolic diterpenes carnosic acid and carnosol, which, in addition to their general antioxidant activities, have recently been suggested as potential ingredients for the prevention and treatment of neurodegenerative diseases. Little is known about the biosynthesis of these diterpenes. Here we show that the biosynthesis of phenolic diterpenes in rosemary predominantly takes place in the glandular trichomes of young leaves, and used this feature to identify the first committed steps. Thus, a copalyl diphosphate synthase (RoCPS1) and two kaurene synthase-like (RoKSL1 and RoKSL2) encoding genes were identified and characterized. Expression in yeast (Saccharomyces cerevisiae) and Nicotiana benthamiana demonstrate that RoCPS1 converts geranylgeranyl diphosphate (GGDP) to copalyl diphosphate (CDP) of normal stereochemistry and that both RoKSL1 and RoKSL2 use normal CDP to produce an abietane diterpene. Comparison to the already characterized diterpene synthase from Salvia miltiorrhiza (SmKSL) demonstrates that the product of RoKSL1 and RoKSL2 is miltiradiene. Expression analysis supports a major contributing role for RoKSL2. Like SmKSL and the sclareol synthase from Salvia sclarea, RoKSL1/2 are diterpene synthases of the TPS-e group which have lost the internal gamma-domain. Furthermore, phylogenetic analysis indicates that RoKSL1 and RoKSL2 belong to a distinct group of KSL enzymes involved in specialized metabolism which most likely emerged before the dicot-monocot split.
Metabolic Engineering | 2014
Qing Liu; David Manzano; Nikola Tanic; Milica Pešić; Jasna Bankovic; Irini Pateraki; Lea Ricard; Albert Ferrer; Ric C. H. de Vos; Sander van de Krol; Harro J. Bouwmeester
Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew that are required for the biosynthesis of parthenolide, using a combination of 454 sequencing of a feverfew glandular trichome cDNA library, co-expression analysis and metabolomics. When parthenolide biosynthesis was reconstituted by transient co-expression of all pathway genes in Nicotiana benthamiana, up to 1.4μgg(-1) parthenolide was produced, mostly present as cysteine and glutathione conjugates. These relatively polar conjugates were highly active against colon cancer cells, with only slightly lower activity than free parthenolide. In addition to these biosynthetic genes, another gene encoding a costunolide and parthenolide 3β-hydroxylase was identified opening up further options to improve the water solubility of parthenolide and therefore its potential as a drug.
PLOS ONE | 2012
Verónica Keim; David Manzano; Francisco J. Fernández; Marta Closa; Paola Andrade; Daniel Caudepón; Cristina Bortolotti; M. Cristina Vega; Montserrat Arró; Albert Ferrer
Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.
Nature Communications | 2016
Ulschan Scheler; Wolfgang Brandt; Andrea Porzel; Kathleen Rothe; David Manzano; Dragana Božić; Dimitra Papaefthimiou; Gerd Ulrich Balcke; Anja Henning; Swanhild Lohse; Sylvestre Marillonnet; Angelos K. Kanellis; Albert Ferrer; Alain Tissier
Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities.
Advances in Experimental Medicine and Biology | 2016
Albert Ferrer; Monserrat Arró; David Manzano; Teresa Altabella
The first transgenes were introduced in a plant genome more than 30 years ago. Since then, the capabilities of the plant scientific community to engineer the genome of plants have progressed at an unparalleled speed. Plant genetic engineering has become a central technology that has dramatically incremented our basic knowledge of plant biology and has enabled the translation of this knowledge into a number of increasingly complex and sophisticated biotechnological applications, which in most cases rely on the simultaneous co-expression of multiple recombinant proteins from different origins. To meet the new challenges of modern plant biotechnology, the plant scientific community has developed a vast arsenal of innovative molecular tools and genome engineering strategies. In this chapter we review a variety of tools, technologies, and strategies developed to transfer and simultaneously co-express multiple transgenes and proteins in a plant host. Their potential advantages, disadvantages, and future prospects are also discussed.
Methods of Molecular Biology | 2014
Montserrat Arró; David Manzano; Albert Ferrer
Farnesyl diphosphate synthase (FPS) catalyzes the sequential head-to-tail condensation of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) and geranyl diphosphate (GPP, C10) to produce farnesyl diphosphate (FPP, C15). This short-chain prenyl diphosphate constitutes a key branch-point of the isoprenoid biosynthetic pathway from which a variety of bioactive isoprenoids that are vital for normal plant growth and survival are produced. Here we describe a protocol to obtain highly purified preparations of recombinant FPS and a radiochemical assay method for measuring FPS activity in purified enzyme preparations and plant tissue extracts.
Plant Science | 2018
Paola Andrade; David Manzano; Karla Ramirez-Estrada; Daniel Caudepón; Montserrat Arró; Albert Ferrer; Michael A. Phillips
The sesquiterpene alcohol nerolidol, synthesized from farnesyl diphosphate (FDP), mediates plant-insect interactions across multiple trophic levels with major implications for pest management in agriculture. We compared nerolidol engineering strategies in tobacco using agroinfiltration to transiently express strawberry (Fragraria ananassa) linalool/nerolidol synthase (FaNES1) either at the endoplasmic reticulum (ER) or in the cytosol as a soluble protein. Using solid phase microextraction and gas chromatography-mass spectrometry (SPME-GCMS), we have determined that FaNES1 directed to the ER via fusion to the transmembrane domain of squalene synthase or hydroxymethylglutaryl - CoA reductase displayed significant improvements in terms of transcript levels, protein accumulation, and volatile production when compared to its cytosolic form. However, the highest levels of nerolidol production were observed when FaNES1 was fused to GFP and expressed in the cytosol. This SPME-GCMS method afforded a limit of detection and quantification of 1.54 and 5.13 pg, respectively. Nerolidol production levels, which ranged from 0.5 to 3.0 μg/g F.W., correlated more strongly to the accumulation of recombinant protein than transcript level, the former being highest in FaNES-GFP transfected plants. These results indicate that while the ER may represent an enriched source of FDP that can be exploited in metabolic engineering, protein accumulation is a better predictor of sesquiterpene production.
Plant Signaling & Behavior | 2017
Paola Andrade; Daniel Caudepón; Teresa Altabella; Montserrat Arró; Albert Ferrer; David Manzano
ABSTRACT Isoprenoids comprise the largest class of natural compounds and are found in all kinds of organisms. In plants, they participate in both primary and specialized metabolism, playing essential roles in nearly all aspects of growth and development. The enormous diversity of this family of compounds is extensively exploited for biotechnological and biomedical applications as biomaterials, biofuels or drugs. Despite their variety of structures, all isoprenoids derive from the common C5 precursor isopentenyl diphosphate (IPP). Plants synthesize IPP through two different metabolic pathways, the mevalonic acid (MVA) and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways that operate in the cytosol-RE and plastids, respectively. MEP-derived isoprenoids include important compounds for chloroplast function and as such, knock-out mutant plants affected in different steps of this pathway display important alterations in plastid structure. These alterations often lead to albino phenotypes and lethality at seedling stage. MVA knock-out mutant plants show, on the contrary, lethal phenotypes already exhibited at the gametophyte or embryo developmental stage. However, the recent characterization of conditional knock-down mutant plants of farnesyl diphosphate synthase (FPS), a central enzyme in cytosolic and mitochondrial isoprenoid biosynthesis, revealed an unexpected role of this pathway in chloroplast development and plastidial isoprenoid metabolism in post-embryonic stages. Upon FPS silencing, chloroplast structure is severely altered, together with a strong reduction in the levels of MEP pathway-derived major end products. This phenotype is associated to misregulation of genes involved in stress responses predominantly belonging to JA and Fe homeostasis pathways. Transcriptomic experiments and analysis of recent literature indicate that sterols are the cause of the observed alterations through an as yet undiscovered mechanism.
Plant Journal | 2002
Angela Masferrer; Montserrat Arró; David Manzano; Hubert Schaller; Xavier Fernàndez-Busquets; P. Moncaleán; Belén Fernández; Núria Cunillera; Albert Boronat; Albert Ferrer