Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David N. Burrows is active.

Publication


Featured researches published by David N. Burrows.


The Astrophysical Journal | 2005

Evidence for a canonical GRB afterglow light curve in the Swift/XRT data

Ja Nousek; Vanessa Mangano; Paul T. O'Brien; P. Giommi; Olivier Godet; S. D. Barthelmy; Mike R. Goad; Sergio Campana; G. Cusumano; J. P. Osborne; A. P. Beardmore; A. Falcone; Jonathan Granot; G. Tagliaferri; Milvia Capalbi; David N. Burrows; Patrizia Romano; C. P. Hurkett; J. A. Kennea; Guido Chincarini; Dirk Grupe; Enrico Ramirez-Ruiz; Sandy Patel; Kim L. Page; Alan A. Wells; Chryssa Kouveliotou; A. Moretti; N. Gehrels

We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) detected with the Swift X-ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power law segments. These power law segments are separated by two corresponding break times. On top of this canonical behavior of the early X-ray light curve, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long lasting sporadx activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission: from photons that are radiated at large angles relative to our line of sight. The first break in the light curve takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve. This energy injection increases the energy of the afterglow shock by at least a factor of f greater than or approx. equal to 4, and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.


Nature | 2006

The association of GRB 060218 with a supernova and the evolution of the shock wave.

Sergio Campana; Vanessa Mangano; Alexander J. Blustin; Peter J. Brown; David N. Burrows; Guido Chincarini; J. R. Cummings; G. Cusumano; M. Della Valle; Daniele Malesani; P. Meszaros; John A. Nousek; M. J. Page; Takanori Sakamoto; Eli Waxman; Bing Zhang; Z. G. Dai; Neil Gehrels; Stefan Immler; F. E. Marshall; K. Mason; A. Moretti; Paul T. O'Brien; Julian P. Osborne; Kim L. Page; Patrizia Romano; Pwa Roming; Gianpiero Tagliaferri; L. R. Cominsky; P. Giommi

Although the link between long Gamma Ray Bursts (GRBs) and supernovae (SNe) has been established, hitherto there have been no observations of the beginning of a supernova explosion and its intimate link to a GRB. In particular, we do not know however how a GRB jet emerges from the star surface nor how a GRB progenitor explodes. Here we report on observations of the close GRB060218 and its connection to SN2006aj. In addition to the classical non-thermal emission, GRB060218 shows a thermal component in its X-ray spectrum, which cools and shifts into the optical/UV band as time passes. We interpret these features as arising from the break out of a shock driven by a mildly relativistic shell into the dense wind surrounding the progenitor. Our observations allow us for the first time to catch a SN in the act of exploding, to directly observe the shock break-out and to provide strong evidence that the GRB progenitor was a Wolf-Rayet star.Although the link between long γ-ray bursts (GRBs) and supernovae has been established, hitherto there have been no observations of the beginning of a supernova explosion and its intimate link to a GRB. In particular, we do not know how the jet that defines a γ-ray burst emerges from the stars surface, nor how a GRB progenitor explodes. Here we report observations of the relatively nearby GRB 060218 (ref. 5) and its connection to supernova SN 2006aj (ref. 6). In addition to the classical non-thermal emission, GRB 060218 shows a thermal component in its X-ray spectrum, which cools and shifts into the optical/ultraviolet band as time passes. We interpret these features as arising from the break-out of a shock wave driven by a mildly relativistic shell into the dense wind surrounding the progenitor. We have caught a supernova in the act of exploding, directly observing the shock break-out, which indicates that the GRB progenitor was a Wolf–Rayet star.


Science | 2005

Bright X-ray Flares in Gamma-Ray Burst Afterglows

David N. Burrows; Patrizia Romano; A. Falcone; Shiho Kobayashi; Bing Zhang; A. Moretti; Paul T. O'Brien; Michael R. Goad; Sergio Campana; Kim L. Page; Lorella Angelini; S. D. Barthelmy; Andrew P. Beardmore; Milvia Capalbi; Guido Chincarini; J. R. Cummings; G. Cusumano; Derek B. Fox; Paolo Giommi; J. E. Hill; J. A. Kennea; Hans A. Krimm; Vanessa Mangano; Francis E. Marshall; P. Meszaros; David C. Morris; John A. Nousek; Julian P. Osborne; Claudio Pagani; Matteo Perri

Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.


Nature | 2005

A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225

Neil Gehrels; Craig L. Sarazin; Paul T. O'Brien; Bing Zhang; Loius M. Barbier; S. D. Barthelmy; Alexander J. Blustin; David N. Burrows; J. Cannizzo; J. R. Cummings; Michael R. Goad; Stephen T. Holland; C. P. Hurkett; J. A. Kennea; Andrew J. Levan; Craig B. Markwardt; K. O. Mason; P. Meszaros; M. J. Page; David M. Palmer; E. Rol; Takanori Sakamoto; R. Willingale; Lorella Angelini; Andrew P. Beardmore; Patricia T. Boyd; Alice A. Breeveld; Sergio Campana; Margaret Chester; Guido Chincarini

Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z ≈ 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (< 10″) and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from—and the localization of—the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.


The Astrophysical Journal | 2006

The early x-ray emission from grbs

P. T. O’Brien; R. Willingale; Julian P. Osborne; Mike R. Goad; Kim L. Page; S. Vaughan; E. Rol; A. P. Beardmore; Olivier Godet; C. P. Hurkett; Alan A. Wells; Bing Zhang; Shiho Kobayashi; David N. Burrows; John A. Nousek; J. A. Kennea; A. Falcone; Dirk Grupe; Neil Gehrels; S. D. Barthelmy; John K. Cannizzo; J. R. Cummings; J. E. Hill; Hans A. Krimm; Guido Chincarini; Gianpiero Tagliaferri; Sergio Campana; A. Moretti; P. Giommi; Matteo Perri

We present observations of the early X-ray emission for a sample of 40 gamma-ray bursts (GRBs) obtained using the Swift satellite, for which the narrow-field instruments were pointed at the burst within 10 minutes of the trigger. Using data from the Burst Alert Telescope and the X-Ray Telescope, we show that the X-ray light curve can be well described by an exponential that relaxes into a power law, often with flares superimposed. The transition time between the exponential and the power law provides a physically defined timescale for the burst duration. In most bursts, the power law breaks to a shallower decay within the first hour, and a late emission hump is observed, which can last for many hours. In other GRBs the hump is weak or absent. The observed variety in the shape of the early X-ray light curve can be explained as a combination of three components: prompt emission from the central engine, afterglow, and the late hump. In this scenario, afterglow emission begins during or soon after the burst, and the observed shape of the X-ray light curve depends on the relative strengths of the emission due to the central engine and that of the afterglow. There is a strong correlation such that those GRBs with stronger afterglow components have brighter early optical emission. The late emission hump can have a total fluence equivalent to that of the prompt phase. GRBs with the strongest late humps have weak or no X-ray flares.


Nature | 2011

Relativistic jet activity from the tidal disruption of a star by a massive black hole

David N. Burrows; J. A. Kennea; G. Ghisellini; Vanessa Mangano; Bing Zhang; Kim L. Page; M. Eracleous; Patrizia Romano; T. Sakamoto; A. Falcone; J. P. Osborne; Sergio Campana; A. P. Beardmore; Alice A. Breeveld; M. M. Chester; R. Corbet; S. Covino; J. R. Cummings; Paolo D'Avanzo; Valerio D'Elia; P. Esposito; P. A. Evans; Dino Fugazza; Jonathan Mark Gelbord; Kazuo Hiroi; S. T. Holland; Kuiyun Huang; Myungshin Im; G. L. Israel; Young-Beom Jeon

Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.D. N. Burrows , J. A. Kennea , G. Ghisellini , V. Mangano , B. Zhang , K. L. Page , M. Eracleous , P. Romano , T. Sakamoto , A. D. Falcone , J. P. Osborne , S. Campana , A. P. Beardmore , A. A. Breeveld , M. M. Chester , R. Corbet , S. Covino , J. R. Cummings , P. D’Avanzo , V. D’Elia , P. Esposito , P. A. Evans , D. Fugazza, J. M. Gelbord , K. Hiroi , S. T. Holland , K. Y. Huang , M. Im, G. Israel , Y. Jeon , Y.-B. Jeon , N. Kawai , H. A. Krimm , P. Mészáros , H. Negoro , N. Omodei , W.K. Park , J. S. Perkins , M. Sugizaki , H.-I. Sung , G. Tagliaferri , E. Troja , Y. Ueda, Y. Urata, R. Usui , L. A. Antonelli , S. D. Barthelmy , G. Cusumano , P. Giommi , F. E. Marshall , A. Melandri , M. Perri , J. L. Racusin , B. Sbarufatti , M. H. Siegel , & N. Gehrels 21


The Astrophysical Journal | 1991

Determination of confidence limits for experiments with low numbers of counts. [Poisson-distributed photon counts from astrophysical sources]

Ralph P. Kraft; David N. Burrows; John A. Nousek

Two different methods, classical and Bayesian, for determining confidence intervals involving Poisson-distributed data are compared. Particular consideration is given to cases where the number of counts observed is small and is comparable to the mean number of background counts. Reasons for preferring the Bayesian over the classical method are given. Tables of confidence limits calculated by the Bayesian method are provided for quick reference. 12 refs.


The Astrophysical Journal | 2001

The Chandra Deep Survey of the Hubble Deep Field-North Area. II. Results from the Caltech Faint Field Galaxy Redshift Survey Area*

Ann Elizabeth Hornschemeier; W. N. Brandt; Gordon Garmire; Donald P. Schneider; Amy J. Barger; Patrick S. Broos; Lennox L. Cowie; Leisa K. Townsley; Marshall W. Bautz; David N. Burrows; G. Chartas; E. D. Feigelson; Richard E. Griffiths; David H. Lumb; John A. Nousek; Larry Ramsey; Wallace L. W. Sargent

A deep X-ray survey of the Hubble Deep Field-North (HDF-N) and its environs is performed using data collected by the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-Ray Observatory. Currently a 221.9 ks exposure is available, the deepest ever presented, and here we give results on X-ray sources located in the 86 × 87 area covered by the Caltech Faint Field Galaxy Redshift Survey (the Caltech area). This area has (1) deep photometric coverage in several optical and near-infrared bands; (2) extensive coverage at radio, submillimeter, and mid-infrared wavelengths; and (3) some of the deepest and most complete spectroscopic coverage ever obtained. It is also where the X-ray data have the greatest sensitivity; the minimum detectable fluxes in the 0.5-2 keV (soft) and 2-8 keV (hard) bands are ≈1.3 × 10-16 and ≈6.5 × 10-16 ergs cm-2 s-1, respectively. More than ≈80% of the extragalactic X-ray background in the hard band is resolved. The 82 Chandra sources detected in the Caltech area are correlated with more than 25 multiwavelength source catalogs, and the results of these correlations as well as spectroscopic follow-up results obtained with the Keck and Hobby-Eberly Telescopes are presented. All but nine of the Chandra sources are detected optically with R 26.5. Redshifts are available for 39% of the Chandra sources, including 96% of the sources with R 5.0) objects. A total of 16 of the 67 1.4 GHz μJy sources in the Caltech area are detected in the X-ray band, and the detection rates for starburst-type and AGN-candidate μJy sources are comparable. Only two of the 17 red, optically faint (I > 25) μJy sources are detected in X-rays. While many of the starburst-type μJy sources appear to contain obscured active galactic nuclei (AGNs), the Chandra data are consistent with the majority of the μJy radio sources being powered by star formation. A total of 11 of the ≈100 ISO mid-infrared sources found in and near the HDF-N are detected in X-rays. In the HDF-N itself, where both the infrared coverage and the X-ray coverage are deepest, it is notable that six of the eight Chandra sources are detected by ISO; most of these are known to be AGNs where the X-ray and infrared detections reveal both the direct and indirect accretion power being generated. The high X-ray-to-infrared matching rate bodes well for future sensitive infrared observations of faint X-ray sources. Four of the 33 very red objects that have been identified in the Caltech area are detected in X-rays; these four are among our hardest Chandra sources, and we argue that they contain moderately luminous obscured AGNs. Overall, however, the small Chandra detection fraction suggests a relatively small AGN content in the optically selected very red object population. A stacking analysis of the very red objects not detected individually by Chandra yields a soft-band detection with an average soft-band X-ray flux of ≈1.9 × 10-17 ergs cm-2 s-1; the observed emission may be associated with the hot interstellar media of moderate-redshift elliptical galaxies. Constraints on AGN candidates, extended X-ray sources, and Galactic objects in the Caltech area are also presented.


The Astronomical Journal | 2001

The Chandra Deep Field North Survey. V. 1 Ms Source Catalogs

W. N. Brandt; D. M. Alexander; Ann Elizabeth Hornschemeier; Gordon Garmire; Donald P. Schneider; Amy J. Barger; F. E. Bauer; Patrick S. Broos; L. L. Cowie; Leisa K. Townsley; David N. Burrows; G. Chartas; E. D. Feigelson; Richard E. Griffiths; John A. Nousek; Wallace L. W. Sargent

An extremely deep X-ray survey (≈1 Ms) of the Hubble Deep Field North (HDF-N) and its environs (≈450 arcmin2) has been performed with the Advanced CCD Imaging Spectrometer on board the Chandra X-Ray Observatory. This is one of the two deepest X-ray surveys ever performed; for point sources near the aim point, it reaches 0.5–2.0 and 2–8 keV flux limits of ≈3 × 10-17 and ≈2 × 10-16 ergs cm-2 s-1, respectively. Here we provide source catalogs, along with details of the observations, data reduction, and technical analysis. Observing conditions, such as background, were excellent for almost all of the exposure. We have detected 370 distinct point sources: 360 in the 0.5–8.0 keV band, 325 in the 0.5–2.0 keV band, 265 in the 2–8 keV band, and 145 in the 4–8 keV band. Two new Chandra sources in the HDF-N itself are reported and discussed. Source positions are accurate to within 06–17 (at ≈90% confidence), depending mainly on the off-axis angle. We also detect two highly significant extended X-ray sources and several other likely extended X-ray sources. We present basic number count results for sources located near the center of the field. Source densities of 7100 deg-2 (at 4.2 × 10-17 ergs cm-2 s-1) and 4200 deg-2 (at 3.8 × 10-16 ergs cm-2 s-1) are observed in the soft and hard bands, respectively.


The Astrophysical Journal | 2009

DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF z=6.7 GRB 080913, z=8.2 GRB 090423, AND SOME SHORT/HARD GRBs

Bing Zhang; Bin-Bin Zhang; Francisco J. Virgili; En-Wei Liang; D. Alexander Kann; Xue-Feng Wu; Daniel Proga; Hou-Jun Lv; Kenji Toma; P. Meszaros; David N. Burrows; Peter W. A. Roming; Neil Gehrels

The two high-redshift gamma-ray bursts, GRB 080913 at z = 6.7 and GRB 090423 at z = 8.2, recently detected by Swift appear as intrinsically short, hard GRBs. They could have been recognized by BATSE as short/hard GRBs should they have occurred at z ≤ 1. In order to address their physical origin, we perform a more thorough investigation on two physically distinct types (Type I/II) of cosmological GRBs and their observational characteristics. We reiterate the definitions of Type I/II GRBs and then review the following observational criteria and their physical motivations: supernova (SN) association, specific star-forming rate (SFR) of the host galaxy, location offset, duration, hardness, spectral lag, statistical correlations, energetics and collimation, afterglow properties, redshift distribution, luminosity function, and gravitational wave signature. Contrary to the traditional approach of assigning the physical category based on the gamma-ray properties (duration, hardness, and spectral lag), we take an alternative approach to define the Type I and Type II Gold Samples using several criteria that are more directly related to the GRB progenitors (SN association, host galaxy type, and specific SFR). We then study the properties of the two Gold Samples and compare them with the traditional long/soft and short/hard samples. We find that the Type II Gold Sample reasonably tracks the long/soft population, although it includes several intrinsically short (shorter than 1 s in the rest frame) GRBs. The Type I Gold Sample only has five GRBs, four of which are not strictly short but have extended emission. Other short/hard GRBs detected in the Swift era represent the BATSE short/hard sample well, but it is unclear whether all of them belong to Type I. We suggest that some (probably even most) high-luminosity short/hard GRBs instead belong to Type II. Based on multiple observational criteria, we suggest that GRB 080913 and GRB 090423 are more likely Type II events. In general, we acknowledge that it is not always straightforward to discern the physical categories of GRBs, and re-emphasize the importance of invoking multiple observational criteria. We cautiously propose an operational procedure to infer the physical origin of a given GRB with available multiple observational criteria, with various caveats laid out.

Collaboration


Dive into the David N. Burrows's collaboration.

Top Co-Authors

Avatar

J. A. Kennea

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

N. Gehrels

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Kim L. Page

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

S. D. Barthelmy

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Nousek

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

S. T. Holland

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge