David N. Lees
Centre for Environment, Fisheries and Aquaculture Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David N. Lees.
International Journal of Food Microbiology | 2000
David N. Lees
The epidemiological data clearly demonstrates that filter feeding bivalve shellfish can, and do, act as efficient vehicles for the transmission of enteric viruses transmitted by the faecal-oral route. This identified hazard has been documented as a cause for concern by various international agencies and has a long history. Disease outbreaks can occur on an epidemic scale as graphically illustrated by an outbreak of Hepatitis A in Shanghai, China in 1988 involving about 300,000 cases. Improvement of harvesting area water quality offers the most sustainable route to improvement in the virological quality of bivalve shellfish sold live. However there is growing awareness, and concern, that current regulatory standards based on faecal coliform monitoring do not fully protect the shellfish consumer from viral infection. New viral test methods based on PCR, and the development of alternative more reliable faecal pollution indicators, offer new approaches for the further development of public health controls. However, further work is required to build a scientific consensus and to understand the implications of their introduction into legislation.
Food and Environmental Virology | 2010
David N. Lees
The viruses primarily associated with shellfish-borne illness are norovirus, causing gastroenteritis and hepatitis A virus (HAV). Recent years have seen a proliferation of publications on methods for detection of these viruses in shellfish using polymerase chain reaction (PCR). However, currently no standard harmonised procedures have been published. Standardisation is necessary before virus methods can be considered for adoption within a regulatory framework. A European standardisation working group is developing a two-part (quantitative and qualitative) standard method for virus detection in foodstuffs, including shellfish, which has the potential to be incorporated into EU legislation as a reference method. This article describes the development of the standard method and outlines the key methodology principles adopted, the controls and other quality assurance measures supporting the method and future necessary developments in the area.
Applied and Environmental Microbiology | 2012
James Lowther; Nicole E. Gustar; Andy Powell; Rachel Hartnell; David N. Lees
ABSTRACT The contamination of bivalve shellfish with norovirus from human fecal sources is recognized as an important human health risk. Standardized quantitative methods for the detection of norovirus in molluscan shellfish are now available, and viral standards are being considered in the European Union and internationally. This 2-year systematic study aimed to investigate the impact of the application of these methods to the monitoring of norovirus contamination in oyster production areas in the United Kingdom. Twenty-four monthly samples of oysters from 39 United Kingdom production areas, chosen to represent a range of potential contamination risk, were tested for norovirus genogroups I and II by using a quantitative real-time reverse transcription (RT)-PCR method. Norovirus was detected in 76.2% (643/844) of samples, with all sites returning at least one positive result. Both prevalences (presence or absence) and norovirus levels varied markedly between sites. However, overall, a marked winter seasonality of contamination by both prevalence and quantity was observed. Correlations were found between norovirus contamination and potential risk indicators, including harvesting area classifications, Escherichia coli scores, and environmental temperatures. A predictive risk score for norovirus contamination was developed by using a combination of these factors. In summary, this study, the largest of its type undertaken to date, provides a systematic analysis of norovirus contamination in commercial oyster production areas in the United Kingdom. The data should assist risk managers to develop control strategies to reduce the risk of human illness resulting from norovirus contamination of bivalve molluscs.
Eurosurveillance | 2015
Andrew D. Turner; Andy Powell; A Schofield; David N. Lees; Craig Baker-Austin
We report the first detection of tetrodotoxins (TTX) in European bivalve shellfish. We demonstrate that TTX is present within the temperate waters of the United Kingdom, along the English Channel, and can accumulate in filter-feeding molluscs. The toxin is heat-stable and thus it cannot be eliminated during cooking. While quantified concentrations were low in comparison to published minimum lethal doses for humans, the results demonstrate that the risk to shellfish consumers should not be discarded.
Analytical and Bioanalytical Chemistry | 2011
Andrew D. Turner; Robert G. Hatfield; Monika Rapkova; Wendy Higman; Myriam Algoet; Benjamin A. Suarez-Isla; Marco Cordova; Catherine Caceres; Jeffrey van de Riet; Ryan Gibbs; Krista Thomas; Michael A. Quilliam; David N. Lees
AbstractA refined version of the pre-column oxidation liquid chromatography with fluorescence detection (ox-LC-FLD) official method AOAC 2005.06 was developed in the UK and validated for the determination of paralytic shellfish poisoning toxins in UK shellfish. Analysis was undertaken here for the comparison of PSP toxicities determined using the LC method for a range of UK bivalve shellfish species against the official European reference method, the PSP mouse bioassay (MBA, AOAC 959.08). Comparative results indicated a good correlation in results for some species (mussels, cockles and clams) but a poor correlation for two species of oysters (Pacific oysters and native oysters), where the LC results in terms of total saxitoxin equivalents were found to be on average more than double the values determined by MBA. With the potential for either LC over-estimation or MBA under-estimation, additional oyster and mussel samples were analysed using MBA and ox-LC-FLD together with further analytical and functional methodologies: a post-column oxidation LC method (LC-ox-FLD), an electrophysiological assay and hydrophilic interaction liquid chromatography with tandem mass spectrometric detection. Results highlighted a good correlation among non-bioassay results, indicating a likely cause of difference was the under-estimation in the MBA, rather than an over-estimation in the LC results. FigureTotal saxitoxin equivalents in oysters (Pacific and native) quantified by ox-LC-FLD, LC-ox-FLD, HPLC-MS/MS and electrophysiological assay as compared with the MBA PSP toxicity reference method
Applied and Environmental Microbiology | 2014
Carlos Campos; David N. Lees
ABSTRACT Human noroviruses (NoV) are the most common cause of epidemic gastroenteritis following consumption of bivalve shellfish contaminated with fecal matter. NoV levels can be effectively reduced by some sewage treatment processes such as activated sludge and membrane bioreactors. However, tertiary sewage treatment and substantial sewage dilution are usually required to achieve low concentrations of virus in shellfish. Most outbreaks have been associated with shellfish harvested from waters affected by untreated sewage from, for example, storm overflows or overboard disposal of feces from boats. In coastal waters, NoV can remain in suspension or associate with organic and inorganic matter and be accumulated by shellfish. Shellfish take considerably longer to purge NoV than fecal indicator bacteria when transferred from sewage-polluted estuarine waters to uncontaminated waters. The abundance and distribution of NoV in shellfish waters are influenced by the levels of sewage treatment, proximity of shellfish beds to sewage sources, rainfall, river flows, salinity, and water temperature. Detailed site-specific information on these factors is required to design measures to control the viral risk.
Toxicon | 2012
Andrew D. Turner; Monika Dhanji-Rapkova; Myriam Algoet; Benjamin A. Suarez-Isla; Marco Cordova; Catherine Caceres; Cory Murphy; Melanie Casey; David N. Lees
Significant differences previously observed in the determination of paralytic shellfish poisoning toxins (PSTs) in oysters using official method AOAC 2005.06 and 959.08 were investigated in detail with regard to possible matrix effects. Method AOAC 2005.06 gave results 2-3 times higher than the mouse bioassay method, 959.08, differences thought to be due to underestimation of PSTs by the mouse bioassay. In order to prove the cause of these large differences, work was conducted here to examine the presence and effects of matrix components on the performance of each of the two assays. A range of oyster, cockle and mussel samples were extracted using the AOAC 959.08 hydrochloric acid (HCl) extraction method and analysed for PSP by both MBA and LC-FLD. In addition, extracts were analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for metals as well as being subjected to a range of nutritional testing methods. Whilst there was no evidence for effect of nutritional components on either assay, ICP-MS analysis revealed a relationship between samples exhibiting the largest differences in relative method performance, specifically those with the largest LC-FLD/MBA toxicity ratio, and samples containing the highest concentrations of zinc and manganese. In order to prove the potential effect of the metals on either the LC-FLD and/or MBA assays, HCl extracts of a range of shellfish were subjected to a number of matrix modifications. Firstly, a number of PSP-positive oyster samples were processed to reduce the concentrations of metals within the extracts, without significantly reducing the concentrations of PSTs. Secondly, a range of mussel and cockle extracts, plus a standard solution of saxitoxin di-hydrochloride were spiked at variable concentrations of zinc. All treated and non-treated extracts, plus a number of controls were subjected to ICP-MS, LC-FLD and MBA testing. Results proved the absence of any effect of metals on the performance of the LC-FLD, whilst showing a large suppressive effect of the metals on the MBA. As such, the results show the performance of the official MBA is potentially unsafe for application to the routine monitoring of PSP toxicity in oysters or in any other shellfish found to contain high concentrations of metal ions.
Microbial Ecology | 2013
Michael Moore; Michael H. Depledge; Lora E. Fleming; Philipp Hess; David N. Lees; Paul Leonard; Lise Madsen; Richard Owen; Hans Pirlet; Jan Seys; Vitor Vasconcelos; Aldo Viarengo
The oceans and coastal seas provide mankind with many benefits including food for around a third of the global population, the air that we breathe and our climate system which enables habitation of much of the planet. However, the converse is that generation of natural events (such as hurricanes, severe storms and tsunamis) can have devastating impacts on coastal populations, while pollution of the seas by pathogens and toxic waste can cause illness and death in humans and animals. Harmful effects from biogenic toxins produced by algal blooms (HABs) and from the pathogens associated with microbial pollution are also a health hazard in seafood and from direct contact with water. The overall global burden of human disease caused by sewage pollution of coastal waters has been estimated at 4 million lost person-years annually. Finally, the impacts of all of these issues will be exacerbated by climate change. A holistic systems approach is needed. It must consider whole ecosystems, and their sustainability, such as integrated coastal zone management, is necessary to address the highly interconnected scientific challenges of increased human population pressure, pollution and over-exploitation of food (and other) resources as drivers of adverse ecological, social and economic impacts. There is also an urgent and critical requirement for effective and integrated public health solutions to be developed through the formulation of politically and environmentally meaningful policies. The research community required to address “Oceans & Human Health” in Europe is currently very fragmented, and recognition by policy makers of some of the problems, outlined in the list of challenges above, is limited. Nevertheless, relevant key policy issues for governments worldwide include the reduction of the burden of disease (including the early detection of emerging pathogens and other threats) and improving the quality of the global environment. Failure to effectively address these issues will impact adversely on efforts to alleviate poverty, sustain the availability of environmental goods and services and improve health and social and economic stability; and thus, will impinge on many policy decisions, both nationally and internationally. Knowledge exchange (KE) will be a key element of any ensuing research. KE will facilitate the integration of biological, medical, epidemiological, social and economic disciplines, as well as the emergence of synergies between seemingly unconnected areas of science and socio-economic issues, and will help to leverage knowledge transfer across the European Union (EU) and beyond. An integrated interdisciplinary systems approach is an effective way to bring together the appropriate groups of scientists, social scientists, economists, industry and other stakeholders with the policy formulators in order to address the complexities of interfacial problems in the area of environment and human health. The Marine Board of the European Science Foundation Working Group on “Oceans and Human Health” has been charged with developing a position paper on this topic with a view to identifying the scientific, social and economic challenges and making recommendations to the EU on policy-relevant research and development activities in this arena. This paper includes the background to health-related issues linked to the coastal environment and highlights the main arguments for an ecosystem-based whole systems approach.
Environmental Microbiology Reports | 2009
Craig Baker-Austin; Anthony Gore; James D. Oliver; Rachel Rangdale; J. Vaun McArthur; David N. Lees
Vibrio vulnificus is a Gram-negative bacterial pathogen responsible for the vast majority of bacterially mediated fatalities from the consumption of raw or undercooked seafood in the USA. Vibrio vulnificus-associated septicaemia can occur rapidly (< 24 h); however, methods for the isolation and confirmation of V. vulnificus from seafood samples typically require several days. A real-time PCR assay was developed for V. vulnificus biotype 1 that provides a rapid means of identifying a gene fragment (vcgC) previously indicated as a strong predictor of potential virulence. PCR probe specificity was confirmed by amplification of 17 clinical V. vulnificus strains and by the lack of amplification with seven non-pathogenic V. vulnificus isolates and a wide range of closely related bacteria. Oyster and seawater samples were amended with a range of environmentally realistic concentrations of C-genotype V. vulnificus cells, which were quantitatively and unambiguously identified according to biotype. Of some significance, we utilized a sample processing and nucleic acid extraction procedure that allowed identification of pathogenic strains of V. vulnificus from oyster matrices without prior enrichment or culturing of strains. This outlined approach allowed the detection of as little as 50 cfu of V. vulnificus in less than 5 h, which compares favourably with culture-based approaches. The results indicate the applicability of this approach for monitoring purposes or as a potential diagnostic tool in clinical settings.
Eurosurveillance | 2016
Ingeborg L. A. Boxman; Linda Verhoef; Harry Vennema; Siew-Lin Ngui; I. H. M. Friesema; Chris Whiteside; David N. Lees; Marion Koopmans
This report describes an outbreak investigation starting with two closely related suspected food-borne clusters of Dutch hepatitis A cases, nine primary cases in total, with an unknown source in the Netherlands. The hepatitis A virus (HAV) genotype IA sequences of both clusters were highly similar (459/460 nt) and were not reported earlier. Food questionnaires and a case-control study revealed an association with consumption of mussels. Analysis of mussel supply chains identified the most likely production area. International enquiries led to identification of a cluster of patients near this production area with identical HAV sequences with onsets predating the first Dutch cluster of cases. The most likely source for this cluster was a case who returned from an endemic area in Central America, and a subsequent household cluster from which treated domestic sewage was discharged into the suspected mussel production area. Notably, mussels from this area were also consumed by a separate case in the United Kingdom sharing an identical strain with the second Dutch cluster. In conclusion, a small number of patients in a non-endemic area led to geographically dispersed hepatitis A outbreaks with food as vehicle. This link would have gone unnoticed without sequence analyses and international collaboration.