Robert G. Hatfield
Oregon State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert G. Hatfield.
Science | 2011
Elizabeth J. Colville; Anders E. Carlson; Brian L. Beard; Robert G. Hatfield; Joseph S. Stoner; Alberto V. Reyes; David J. Ullman
Melting of the Antarctic Ice Sheet contributed substantially to the excess sea-level rise of the last interglacial period. To ascertain the response of the southern Greenland Ice Sheet (GIS) to a boreal summer climate warmer than at present, we explored whether southern Greenland was deglaciated during the Last Interglacial (LIG), using the Sr-Nd-Pb isotope ratios of silt-sized sediment discharged from southern Greenland. Our isotope data indicate that no single southern Greenland geologic terrane was completely deglaciated during the LIG, similar to the Holocene. Differences in sediment sources during the LIG relative to the early Holocene denote, however, greater southern GIS retreat during the LIG. These results allow the evaluation of a suite of GIS models and are consistent with a GIS contribution of 1.6 to 2.2 meters to the ≥4-meter LIG sea-level highstand, requiring a significant sea-level contribution from the Antarctic Ice Sheet.
Geochemistry Geophysics Geosystems | 2012
Michael Manga; Matthew J. Hornbach; Anne Le Friant; Osamu Ishizuka; Nicole A. Stroncik; Tatsuya Adachi; Mohammed Aljahdali; Georges Boudon; Christoph Breitkreuz; Andrew Fraass; Akihiko Fujinawa; Robert G. Hatfield; Martin Jutzeler; Kyoko S. Kataoka; Sara Lafuerza; Fukashi Maeno; Michael Martinez-Colon; Molly McCanta; Sally Morgan; Martin R. Palmer; Takeshi Saito; Angela L. Slagle; Adam J. Stinton; K. S. V. Subramanyam; Yoshihiko Tamura; Peter J. Talling; Benoît Villemant; Deborah Wall-Palmer; Fei Wang
Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m2 on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to 15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m2, a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present-day volcanism is confined to the region with the highest heat flow.
Nature | 2014
Alberto V. Reyes; Anders E. Carlson; Brian L. Beard; Robert G. Hatfield; Joseph S. Stoner; Kelsey Winsor; Bethany Welke; David J. Ullman
Varying levels of boreal summer insolation and associated Earth system feedbacks led to differing climate and ice-sheet states during late-Quaternary interglaciations. In particular, Marine Isotope Stage (MIS) 11 was an exceptionally long interglaciation and potentially had a global mean sea level 6 to 13 metres above the present level around 410,000 to 400,000 years ago, implying substantial mass loss from the Greenland ice sheet (GIS). There are, however, no model simulations and only limited proxy data to constrain the magnitude of the GIS response to climate change during this ‘super interglacial’, thus confounding efforts to assess climate/ice-sheet threshold behaviour and associated sea-level rise. Here we show that the south GIS was drastically smaller during MIS 11 than it is now, with only a small residual ice dome over southernmost Greenland. We use the strontium–neodymium–lead isotopic composition of proglacial sediment discharged from south Greenland to constrain the provenance of terrigenous silt deposited on the Eirik Drift, a sedimentary deposit off the south Greenland margin. We identify a major reduction in sediment input derived from south Greenland’s Precambrian bedrock terranes, probably reflecting the cessation of subglacial erosion and sediment transport as a result of near-complete deglaciation of south Greenland. Comparison with ice-sheet configurations from numerical models suggests that the GIS lost about 4.5 to 6 metres of sea-level-equivalent volume during MIS 11. This is evidence for late-Quaternary GIS collapse after it crossed a climate/ice-sheet stability threshold that may have been no more than several degrees above pre-industrial temperatures.
Science & Engineering Faculty | 2015
A. Le Friant; Osamu Ishizuka; Georges Boudon; Martin R. Palmer; Peter J. Talling; B. Villemant; Tatsuya Adachi; Mohammed Aljahdali; Christoph Breitkreuz; Morgane Brunet; Benoit Caron; Maya Coussens; Christine Deplus; Daisuke Endo; Nathalie Feuillet; A.J. Fraas; Akihiko Fujinawa; Malcolm B. Hart; Robert G. Hatfield; Matt Hornbach; Martin Jutzeler; Kyoko S. Kataoka; J-C. Komorowski; Elodie Lebas; Sara Lafuerza; Fukashi Maeno; Michael Manga; Michael Martinez-Colon; Molly McCanta; Sally Morgan
IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes.
Geochemistry Geophysics Geosystems | 2012
Kelsey Winsor; Anders E. Carlson; Gary P. Klinkhammer; Joseph S. Stoner; Robert G. Hatfield
[1] Boreal summer insolation during the last interglaciation (LIG) generally warmed the subpolar to polar Northern Hemisphere more than during the early Holocene, yet regional climate variations between the two periods remain. We investigate northeast Labrador Sea subsurface temperature and hydrography across terminations (T) I and II and during the LIG to assess the impact of two different magnitudes of boreal summer insolation increase on the northeast Labrador Sea. We use Mg/Ca ratios in Neogloboquadrina pachyderma (sinistral) as a proxy of calcification temperature to document changes in subsurface temperatures over Eirik Drift. Our corresponding record of d 18 O of seawater documents changes in water mass salinity. Mg/Ca calcification temperatures peak early in the Holocene coincident with peak boreal summer insolation. In contrast, LIG temperatures are relatively constant through the interglaciation, and are no warmer than peak Holocene temperatures. During the first half of the LIG, d 18 O of seawater remains depleted, likely from southern Greenland Ice Sheet retreat and enhanced Arctic freshwater and sea-ice export to the Labrador Sea. The consequent stratification of the Labrador Sea and attendant suppressed convection explains delayed deep-ocean ventilation and a cooler subsurface in the northeast Labrador Sea during the LIG.
Geochemistry Geophysics Geosystems | 2014
Deborah Wall-Palmer; Maya Coussens; Peter J. Talling; Martin Jutzeler; Michael Cassidy; Isabelle Marchant; Martin R. Palmer; S.F.L. Watt; Christopher W. Smart; Jodie K. Fisher; Malcolm B. Hart; Andrew Fraass; J. Trofimovs; Anne Le Friant; Osamu Ishizuka; Tatsuya Adachi; Mohammed Aljahdali; Georges Boudon; Christoph Breitkreuz; Daisuke Endo; Akihiko Fujinawa; Robert G. Hatfield; Matthew J. Hornbach; Kyoko S. Kataoka; Sara Lafuerza; Fukashi Maeno; Michael Manga; Michael Martinez-Colon; Molly McCanta; Sally Morgan
Marine sediments around volcanic islands contain an archive of volcaniclastic deposits, which can be used to reconstruct the volcanic history of an area. Such records hold many advantages over often incomplete terrestrial data sets. This includes the potential for precise and continuous dating of intervening sediment packages, which allow a correlatable and temporally constrained stratigraphic framework to be constructed across multiple marine sediment cores. Here we discuss a marine record of eruptive and mass-wasting events spanning ∼250 ka offshore of Montserrat, using new data from IODP Expedition 340, as well as previously collected cores. By using a combination of high-resolution oxygen isotope stratigraphy, AMS radiocarbon dating, biostratigraphy of foraminifera and calcareous nannofossils, and clast componentry, we identify five major events at Soufriere Hills volcano since 250 ka. Lateral correlations of these events across sediment cores collected offshore of the south and south west of Montserrat have improved our understanding of the timing, extent and associations between events in this area. Correlations reveal that powerful and potentially erosive density-currents traveled at least 33 km offshore and demonstrate that marine deposits, produced by eruption-fed and mass-wasting events on volcanic islands, are heterogeneous in their spatial distribution. Thus, multiple drilling/coring sites are needed to reconstruct the full chronostratigraphy of volcanic islands. This multidisciplinary study will be vital to interpreting the chaotic records of submarine landslides at other sites drilled during Expedition 340 and provides a framework that can be applied to the stratigraphic analysis of sediments surrounding other volcanic islands.
Geochemistry Geophysics Geosystems | 2016
Maya Coussens; Deborah Wall-Palmer; Peter J. Talling; S.F.L. Watt; Michael Cassidy; Martin Jutzeler; Michael A. Clare; James E. Hunt; Michael Manga; Thomas M. Gernon; Martin R. Palmer; Stuart J. Hatter; Georges Boudon; Daisuke Endo; Akihiko Fujinawa; Robert G. Hatfield; Matthew J. Hornbach; Osamu Ishizuka; Kyoko S. Kataoka; Anne Le Friant; Fukashi Maeno; Molly McCanta; Adam J. Stinton
Hole U1395B, drilled southeast of Montserrat during Integrated Ocean Drilling Program Expedition 340, provides a long (>1 Ma) and detailed record of eruptive and mass-wasting events (>130 discrete events). This record can be used to explore the temporal evolution in volcanic activity and landslides at an arc volcano. Analysis of tephra fall and volcaniclastic turbidite deposits in the drill cores reveals three heightened periods of volcanic activity on the island of Montserrat (?930 ka to ?900 ka, ?810 ka to ?760 ka, and ?190 ka to ?120 ka) that coincide with periods of increased volcano instability and mass-wasting. The youngest of these periods marks the peak in activity at the Soufriere Hills volcano. The largest flank collapse of this volcano (?130 ka) occurred towards the end of this period, and two younger landslides also occurred during a period of relatively elevated volcanism. These three landslides represent the only large (>0.3 km3) flank collapses of the Soufriere Hills edifice, and their timing also coincides with periods of rapid sea-level rise (>5 m/ka). Available age data from other island arc volcanoes suggests a general correlation between the timing of large landslides and periods of rapid sea-level rise, but this is not observed for volcanoes in intra-plate ocean settings. We thus infer that rapid sea-level rise may modulate the timing of collapse at island arc volcanoes, but not in larger ocean-island settings.
Geochemistry Geophysics Geosystems | 2015
Molly McCanta; Robert G. Hatfield; B. J. Thomson; Simon J. Hook; Elizabeth Fisher
This is the publisher’s final pdf. The article is copyrighted by the American Geophysical Union and published by John Wiley & Sons, Inc. It can be found at: http://agupubs.onlinelibrary.wiley.com/agu/journal/10.1002/%28ISSN%291525-2027/
Journal of Geophysical Research | 2015
Matthew J. Hornbach; Michael Manga; Michael Genecov; Robert Valdez; Peter Miller; Demian M. Saffer; Esther Adelstein; Sara Lafuerza; Tatsuya Adachi; Christoph Breitkreuz; Martin Jutzeler; Anne Le Friant; Osamu Ishizuka; Sally Morgan; Angela L. Slagle; Peter J. Talling; Andrew Fraass; S.F.L. Watt; Nicole A. Stroncik; Mohammed Aljahdali; Georges Boudon; Akihiko Fujinawa; Robert G. Hatfield; Kyoko S. Kataoka; Fukashi Maeno; Michael Martinez-Colon; Molly McCanta; Martin R. Palmer; Adam J. Stinton; K. S. V. Subramanyam
Recent studies hypothesize that some submarine slides fail via pressure-driven slow-slip deformation. To test this hypothesis, this study derives pore pressures in failed and adjacent unfailed deep marine sediments by integrating rock physics models, physical property measurements on recovered sediment core, and wireline logs. Two drill sites (U1394 and U1399) drilled through interpreted slide debris; a third (U1395) drilled into normal marine sediment. Near-hydrostatic fluid pressure exists in sediments at site U1395. In contrast, results at both sites U1394 and U1399 indicate elevated pore fluid pressures in some sediment. We suggest that high pore pressure at the base of a submarine slide deposit at site U1394 results from slide shearing. High pore pressure exists throughout much of site U1399, and Mohr circle analysis suggests that only slight changes in the stress regime will trigger motion. Consolidation tests and permeability measurements indicate moderately low (~10−16–10−17 m2) permeability and overconsolidation in fine-grained slide debris, implying that these sediments act as seals. Three mechanisms, in isolation or in combination, may produce the observed elevated pore fluid pressures at site U1399: (1) rapid sedimentation, (2) lateral fluid flow, and (3) shearing that causes sediments to contract, increasing pore pressure. Our preferred hypothesis is this third mechanism because it explains both elevated fluid pressure and sediment overconsolidation without requiring high sedimentation rates. Our combined analysis of subsurface pore pressures, drilling data, and regional seismic images indicates that slope failure offshore Martinique is perhaps an ongoing, creep-like process where small stress changes trigger motion.
Geology | 2017
Anders E. Carlson; Zoe Kilmer; L. B. Ziegler; Joseph S. Stoner; Greg Wiles; Kaitlin Starr; Maureen H. Walczak; William Colgan; Alberto V. Reyes; David J. Leydet; Robert G. Hatfield
Columbia Glacier in Prince William Sound, Alaska, has retreated ∼20 km in the past three decades. We use marine sediment records to document the Columbia Glacier advance and retreat history over the past 1.6 k.y. in an effort to place its recent retreat in the context of the Common Era (C.E.). A change in magnetic mineralogy coincided with a shift in sediment geochemistry ca. 0.9 ka. This provenance change documents the advance of Columbia Glacier across a fault, resulting in glacial erosion of mafic rocks near the coast; this agrees with the timing of ice advance reconstructed using dendrochronology. Our marine provenance records show that Columbia Glacier remained advanced south of this fault into the 21st century. Columbia Glacier has now retreated north of this fault, making its recent retreat unprecedented since before ca. 0.9 ka. Southern Alaska temperatures have now warmed to pre–0.9 ka levels, based on tree-ring and reanalysis data. We show with glacier model simulations that the warming between C.E. 1910 and 1980, that includes anthropogenic forcing, was sufficient to trigger the recent retreat of Columbia Glacier from its extended position of the past 0.9 k.y., consistent with our data-driven assessment of the relationship between regional climate change and glacier extent. We conclude that the recent retreat of Columbia Glacier is a response to climate change rather than part of a natural internal tidewater-glacier oscillation.
Collaboration
Dive into the Robert G. Hatfield's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs