David P. Bazett-Jones
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David P. Bazett-Jones.
Chromosoma | 1997
Michael J. Hendzel; Yi Wei; Michael A. Mancini; Aaron A. Van Hooser; Tamara A. Ranalli; B. R. Brinkley; David P. Bazett-Jones; C. David Allis
Abstract. We have generated and characterized a novel site-specific antibody highly specific for the phosphorylated form of the amino-terminus of histone H3 (Ser10). In this study, we used this antibody to examine in detail the relationship between H3 phosphorylation and mitotic chromosome condensation in mammalian cells. Our results extend previous biochemical studies by demonstrating that mitotic phosphorylation of H3 initiates nonrandomly in pericentromeric heterochromatin in late G2 interphase cells. Following initiation, H3 phosphorylation appears to spread throughout the condensing chromatin and is complete in most cell lines just prior to the formation of prophase chromosomes, in which a phosphorylated, but nonmitotic, chromosomal organization is observed. In general, there is a precise spatial and temporal correlation between H3 phosphorylation and initial stages of chromatin condensation. Dephosphorylation of H3 begins in anaphase and is complete immediately prior to detectable chromosome decondensation in telophase cells. We propose that the singular phosphorylation of the amino-terminus of histone H3 may be involved in facilitating two key functions during mitosis: (1) regulate protein-protein interactions to promote binding of trans-acting factors that “drive” chromatin condensation as cells enter M-phase and (2) coordinate chromatin decondensation associated with M-phase.
Cell Stem Cell | 2008
Sol Efroni; Radharani Duttagupta; Jill Cheng; Hesam Dehghani; Daniel J. Hoeppner; Chandravanu Dash; David P. Bazett-Jones; Stuart F. J. Le Grice; Ronald D. G. McKay; Kenneth H. Buetow; Thomas R. Gingeras; Tom Misteli; Eran Meshorer
The molecular mechanisms underlying pluripotency and lineage specification from embryonic stem cells (ESCs) are largely unclear. Differentiation pathways may be determined by the targeted activation of lineage-specific genes or by selective silencing of genome regions. Here we show that the ESC genome is transcriptionally globally hyperactive and undergoes large-scale silencing as cells differentiate. Normally silent repeat regions are active in ESCs, and tissue-specific genes are sporadically expressed at low levels. Whole-genome tiling arrays demonstrate widespread transcription in coding and noncoding regions in ESCs, whereas the transcriptional landscape becomes more discrete as differentiation proceeds. The transcriptional hyperactivity in ESCs is accompanied by disproportionate expression of chromatin-remodeling genes and the general transcription machinery. We propose that global transcription is a hallmark of pluripotent ESCs, contributing to their plasticity, and that lineage specification is driven by reduction of the transcribed portion of the genome.
Journal of Cell Biology | 2006
Michael J. Kruhlak; Arkady Celeste; Graham Dellaire; Oscar Fernandez-Capetillo; Waltraud G. Müller; James G. McNally; David P. Bazett-Jones; André Nussenzweig
The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion (Pilch, D.R., O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner. 2003. Biochem. Cell Biol. 81:123–129; Morrison, A.J., and X. Shen. 2005. Cell Cycle. 4:568–571; van Attikum, H., and S.M. Gasser. 2005. Nat. Rev. Mol. Cell. Biol. 6:757–765). The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated (ATM; Bakkenist, C.J., and M.B. Kastan. 2003. Nature. 421:499–506). However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30–40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate–dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair.
Molecular Cell | 2015
Timothy J. Nott; Evangelia Petsalaki; Patrick J. Farber; Dylan Jervis; Eden Fussner; Anne Plochowietz; Timothy D. Craggs; David P. Bazett-Jones; Tony Pawson; Julie D. Forman-Kay; Andrew J. Baldwin
Summary Cells chemically isolate molecules in compartments to both facilitate and regulate their interactions. In addition to membrane-encapsulated compartments, cells can form proteinaceous and membraneless organelles, including nucleoli, Cajal and PML bodies, and stress granules. The principles that determine when and why these structures form have remained elusive. Here, we demonstrate that the disordered tails of Ddx4, a primary constituent of nuage or germ granules, form phase-separated organelles both in live cells and in vitro. These bodies are stabilized by patterned electrostatic interactions that are highly sensitive to temperature, ionic strength, arginine methylation, and splicing. Sequence determinants are used to identify proteins found in both membraneless organelles and cell adhesion. Moreover, the bodies provide an alternative solvent environment that can concentrate single-stranded DNA but largely exclude double-stranded DNA. We propose that phase separation of disordered proteins containing weakly interacting blocks is a general mechanism for forming regulated, membraneless organelles.
Journal of Biological Chemistry | 2006
Sandra B. Hake; Benjamin A. Garcia; Elizabeth M. Duncan; Monika Kauer; Graham Dellaire; Jeffrey Shabanowitz; David P. Bazett-Jones; C. David Allis; Donald F. Hunt
Covalent histone modifications and the incorporation of histone variants bring about changes in chromatin structure that in turn alter gene expression. Interest in non-allelic histone variants has been renewed, in part because of recent work on H3 (and other) histone variants. However, only in mammals do three non-centromeric H3 variants (H3.1, H3.2, and H3.3) exist. Here, we show that mammalian cell lines can be separated into two different groups based on their expression of H3.1, H3.2, and H3.3 at both mRNA and protein levels. Additionally, the ratio of these variants changes slightly during neuronal differentiation of murine ES cells. This difference in H3 variant expression between cell lines could not be explained by changes in growth rate, cell cycle stages, or chromosomal ploidy, but rather suggests other possibilities, such as changes in H3 variant incorporation during differentiation and tissue- or species-specific H3 variant expression. Moreover, quantitative mass spectrometry analysis of human H3.1, H3.2, and H3.3 showed modification differences between these three H3 variants, suggesting that they may have different biological functions. Specifically, H3.3 contains marks associated with transcriptionally active chromatin, whereas H3.2, in contrast, contains mostly silencing modifications that have been associated with facultative heterochromatin. Interestingly, H3.1 is enriched in both active and repressive marks, although the latter marks are different from those observed in H3.2. Although the biological significance as to why mammalian cells differentially employ three highly similar H3 variants remains unclear, our results underscore potential functional differences between them and reinforce the general view that H3.1 and H3.2 in mammalian cells should not be treated as equivalent proteins.
Molecular and Cellular Biology | 2000
Audrey H. Wang; Michael J. Kruhlak; Jiong Wu; Nicholas R. Bertos; Marko Vezmar; Barry I. Posner; David P. Bazett-Jones; Xiang-Jiao Yang
ABSTRACT Histone (de)acetylation is important for the regulation of fundamental biological processes such as gene expression and DNA recombination. Distinct classes of histone deacetylases (HDACs) have been identified, but how they are regulated in vivo remains largely unexplored. Here we describe results demonstrating that HDAC4, a member of class II human HDACs, is localized in the cytoplasm and/or the nucleus. Moreover, we have found that HDAC4 interacts with the 14-3-3 family of proteins that are known to bind specifically to conserved phosphoserine-containing motifs. Deletion analyses suggested that S246, S467, and S632 of HDAC4 mediate this interaction. Consistent with this, alanine substitutions of these serine residues abrogated 14-3-3 binding. Although these substitutions had minimal effects on the deacetylase activity of HDAC4, they stimulated its nuclear localization and thus led to enhanced transcriptional repression. These results indicate that 14-3-3 proteins negatively regulate HDAC4 by preventing its nuclear localization and thereby uncover a novel regulatory mechanism for HDACs.
Journal of Histochemistry and Cytochemistry | 2004
Rozalia Nisman; Graham Dellaire; Ying Ren; Ren Li; David P. Bazett-Jones
Luminescent semiconductor quantum dots (QDs) are a new class of fluorescent label with wide-ranging applications for cell imaging. The electron density and elemental composition of these materials permit the extension of their use as probes in conventional electron microscopy (TEM) and energy-filtered TEM (EFTEM). Here we illustrate the feasibility of using streptavidin-conjugated QDs as TEM tags by labeling a nuclear protein on cell sections and obtaining correlative fluorescence and TEM data. We also show that QD probes can be employed in conjunction with immunogold for co-localization of proteins at the ultrastructural level. Furthermore, by obtaining cadmium elemental maps of CdSe/ZnS QDs distributed on a nuclear structure, we demonstrate the potential of QDs for co-localization of multiple proteins when used in combination with EFTEM.
PLOS ONE | 2010
Kashif Ahmed; Hesam Dehghani; Peter J. Rugg-Gunn; Eden Fussner; Janet Rossant; David P. Bazett-Jones
An open chromatin architecture devoid of compact chromatin is thought to be associated with pluripotency in embryonic stem cells. Establishing this distinct epigenetic state may also be required for somatic cell reprogramming. However, there has been little direct examination of global structural domains of chromatin during the founding and loss of pluripotency that occurs in preimplantation mouse development. Here, we used electron spectroscopic imaging to examine large-scale chromatin structural changes during the transition from one-cell to early postimplantation stage embryos. In one-cell embryos chromatin was extensively dispersed with no noticeable accumulation at the nuclear envelope. Major changes were observed from one-cell to two-cell stage embryos, where chromatin became confined to discrete blocks of compaction and with an increased concentration at the nuclear envelope. In eight-cell embryos and pluripotent epiblast cells, chromatin was primarily distributed as an extended meshwork of uncompacted fibres and was indistinguishable from chromatin organization in embryonic stem cells. In contrast, lineage-committed trophectoderm and primitive endoderm cells, and the stem cell lines derived from these tissues, displayed higher levels of chromatin compaction, suggesting an association between developmental potential and chromatin organisation. We examined this association in vivo and found that deletion of Oct4, a factor required for pluripotency, caused the formation of large blocks of compact chromatin in putative epiblast cells. Together, these studies show that an open chromatin architecture is established in the embryonic lineages during development and is sufficient to distinguish pluripotent cells from tissue-restricted progenitor cells.
Molecular Cell | 2012
Tamir Chandra; Kristina Kirschner; Jean Yves Thuret; Benjamin D. Pope; Tyrone Ryba; Scott Newman; Kashif Ahmed; Shamith Samarajiwa; Rafik Salama; Thomas Carroll; Rory Stark; Rekin’s Janky; Masako Narita; Lixiang Xue; Agustin Chicas; Sabrina Nũnez; Ralf Janknecht; Yoko Hayashi-Takanaka; Michael D. Wilson; Aileen Marshall; Duncan T. Odom; M. Madan Babu; David P. Bazett-Jones; Simon Tavaré; Paul A.W. Edwards; Scott W. Lowe; Hiroshi Kimura; David M. Gilbert; Masashi Narita
The expansion of repressive epigenetic marks has been implicated in heterochromatin formation during embryonic development, but the general applicability of this mechanism is unclear. Here we show that nuclear rearrangement of repressive histone marks H3K9me3 and H3K27me3 into nonoverlapping structural layers characterizes senescence-associated heterochromatic foci (SAHF) formation in human fibroblasts. However, the global landscape of these repressive marks remains unchanged upon SAHF formation, suggesting that in somatic cells, heterochromatin can be formed through the spatial repositioning of pre-existing repressively marked histones. This model is reinforced by the correlation of presenescent replication timing with both the subsequent layered structure of SAHFs and the global landscape of the repressive marks, allowing us to integrate microscopic and genomic information. Furthermore, modulation of SAHF structure does not affect the occupancy of these repressive marks, nor vice versa. These experiments reveal that high-order heterochromatin formation and epigenetic remodeling of the genome can be discrete events.
Autophagy | 2006
Jason Szeto; Natalia A. Kaniuk; Veronica Canadien; Rozalia Nisman; Noboru Mizushima; Tamotsu Yoshimori; David P. Bazett-Jones; John H. Brumell
Misfolded proteins can be directed into cytoplasmic aggregates such as aggresomes and dendritic cellaggresome-like induced structures (DALIS). DALIS were originally identified in lipopolysaccharidestimulateddendritic cells and act as storage compartments for polyubiquitinated Defective RibosomalProducts (DRiPs) prior to their clearance by the proteasome. Here we demonstrate that ubiquitinatedprotein aggregates that are similar to DALIS, and not related to aggresomes, can be observed in severalcell types in response to stress, including oxidative stress, transfection, and starvation. Significantly, bothimmune and non-immune cells could form these aggresome-like induced structures (ALIS). Proteinsynthesis was essential for ALIS formation in response to oxidative stress, indicating that DRiP formationwas required. Furthermore, puromycin, which increases DRiP formation, was sufficient to induce ALISformation. Inhibition of either proteasomes or of autophagy interfered with ALIS clearance in puromycintreated cells. Autophagy inhibition enhanced ALIS formation under a variety of stress conditions. Duringstarvation, ALIS formation in autophagy-deficient cells was only partially inhibited by protein synthesisinhibitors, indicating that both long-lived proteins and DRiPs can be targeted to ALIS. Together, thesefindings demonstrate that ALIS act as generalized stress-induced protein storage compartments forsubstrates of the proteasome and autophagy.