Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François-Michel Boisvert is active.

Publication


Featured researches published by François-Michel Boisvert.


Nature Reviews Molecular Cell Biology | 2007

The multifunctional nucleolus

François-Michel Boisvert; Silvana van Koningsbruggen; Joaquín Navascués; Angus I. Lamond

The nucleolus is a distinct subnuclear compartment that was first observed more than 200 years ago. Nucleoli assemble around the tandemly repeated ribosomal DNA gene clusters and 28S, 18S and 5.8S ribosomal RNAs (rRNAs) are transcribed as a single precursor, which is processed and assembled with the 5S rRNA into ribosome subunits. Although the nucleolus is primarily associated with ribosome biogenesis, several lines of evidence now show that it has additional functions. Some of these functions, such as regulation of mitosis, cell-cycle progression and proliferation, many forms of stress response and biogenesis of multiple ribonucleoprotein particles, will be discussed, as will the relation of the nucleolus to human diseases.


Journal of Cell Biology | 2008

Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes

Laura Trinkle-Mulcahy; Séverine Boulon; Yun Wah Lam; Roby Urcia; François-Michel Boisvert; Franck Vandermoere; Nick A. Morrice; Sam Swift; Ulrich Rothbauer; Heinrich Leonhardt; Angus I. Lamond

The identification of interaction partners in protein complexes is a major goal in cell biology. Here we present a reliable affinity purification strategy to identify specific interactors that combines quantitative SILAC-based mass spectrometry with characterization of common contaminants binding to affinity matrices (bead proteomes). This strategy can be applied to affinity purification of either tagged fusion protein complexes or endogenous protein complexes, illustrated here using the well-characterized SMN complex as a model. GFP is used as the tag of choice because it shows minimal nonspecific binding to mammalian cell proteins, can be quantitatively depleted from cell extracts, and allows the integration of biochemical protein interaction data with in vivo measurements using fluorescence microscopy. Proteins binding nonspecifically to the most commonly used affinity matrices were determined using quantitative mass spectrometry, revealing important differences that affect experimental design. These data provide a specificity filter to distinguish specific protein binding partners in both quantitative and nonquantitative pull-down and immunoprecipitation experiments.


Molecular & Cellular Proteomics | 2003

A Proteomic Analysis of Arginine-methylated Protein Complexes

François-Michel Boisvert; Jocelyn Côté; Marie-Chloé Boulanger; Stéphane Richard

Arginine methylation is a post-translational modification that results in the formation of asymmetrical and symmetrical dimethylated arginines (a- and sDMA). This modification is catalyzed by type I and II protein-arginine methyltransferases (PRMT), respectively. The two major enzymes PRMT1 (type I) and PRMT5 (type II) preferentially methylate arginines located in RG-rich clusters. Arginine methylation is a common modification, but the reagents for detecting this modification have been lacking. Thus, fewer than 20 proteins have been identified in the last 40 years as containing dimethylated arginines. We have generated previously four arginine methyl-specific antibodies; ASYM24 and ASYM25 are specific for aDMA, whereas SYM10 and SYM11 recognize sDMA. All of these antibodies were generated by using peptides with aDMA or sDMA in the context of different RG-rich sequences. HeLa cell extracts were used to purify the protein complexes recognized by each of the four antibodies, and the proteins were identified by microcapillary reverse-phase liquid chromatography coupled on line with electrospray ionization tandem mass spectrometry. The analysis of two tandem mass spectra for each methyl-specific antibody resulted in the identification of over 200 new proteins that are putatively arginine-methylated. The major protein complexes that were purified include components required for pre-mRNA splicing, polyadenylation, transcription, signal transduction, and cytoskeleton and DNA repair. These findings provide a basis for the identification of the role of arginine methylation in many cellular processes.


Molecular & Cellular Proteomics | 2012

A Quantitative Spatial Proteomics Analysis of Proteome Turnover in Human Cells

François-Michel Boisvert; Yasmeen Ahmad; Marek Gierliński; Fabien Charrière; Douglas J. Lamont; Michelle S. Scott; Geoff J. Barton; Angus I. Lamond

Measuring the properties of endogenous cell proteins, such as expression level, subcellular localization, and turnover rates, on a whole proteome level remains a major challenge in the postgenome era. Quantitative methods for measuring mRNA expression do not reliably predict corresponding protein levels and provide little or no information on other protein properties. Here we describe a combined pulse-labeling, spatial proteomics and data analysis strategy to characterize the expression, localization, synthesis, degradation, and turnover rates of endogenously expressed, untagged human proteins in different subcellular compartments. Using quantitative mass spectrometry and stable isotope labeling with amino acids in cell culture, a total of 80,098 peptides from 8,041 HeLa proteins were quantified, and their spatial distribution between the cytoplasm, nucleus and nucleolus determined and visualized using specialized software tools developed in PepTracker. Using information from ion intensities and rates of change in isotope ratios, protein abundance levels and protein synthesis, degradation and turnover rates were calculated for the whole cell and for the respective cytoplasmic, nuclear, and nucleolar compartments. Expression levels of endogenous HeLa proteins varied by up to seven orders of magnitude. The average turnover rate for HeLa proteins was ∼20 h. Turnover rate did not correlate with either molecular weight or net charge, but did correlate with abundance, with highly abundant proteins showing longer than average half-lives. Fast turnover proteins had overall a higher frequency of PEST motifs than slow turnover proteins but no general correlation was observed between amino or carboxyl terminal amino acid identities and turnover rates. A subset of proteins was identified that exist in pools with different turnover rates depending on their subcellular localization. This strongly correlated with subunits of large, multiprotein complexes, suggesting a general mechanism whereby their assembly is controlled in a different subcellular location to their main site of function.


Nucleic Acids Research | 2009

NOPdb: Nucleolar Proteome Database—2008 update

Yasmeen Ahmad; François-Michel Boisvert; Peter Gregor; Andy Cobley; Angus I. Lamond

An experimental data handling system has been created as an update to the previous Nucleolar Proteome Database (NOPdb3.0: http://www.lamondlab.com/NOPdb3.0/). This updated system is able to manage large data sets identified by multiple mass spectrometry and has been used to analyse highly purified preparations of human nucleoli from different cell lines. The newly created application includes a dynamic relational database, which is kept up to date by laboratory staff. The data are further annotated with information from specific external sources on the web, including the IPI and Gene Ontology databases. In addition, an Application Programming Interface provides external users with a portal to link into the nucleolar proteome database and hence, gain access to continually updated results. From the initial ∼700 human proteins identified in the previous iteration of the NOPdb, we have now identified over 50 000 peptides contained in over 4500 human proteins from purified nucleoli, providing enhanced coverage of the nucleolar proteome.


Journal of Cell Biology | 2002

Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing

François-Michel Boisvert; Jocelyn Côté; Marie-Chloé Boulanger; Patrick Cléroux; François Bachand; Chantal Autexier; Stéphane Richard

The nuclear structures that contain symmetrical dimethylated arginine (sDMA)–modified proteins and the role of this posttranslational modification is unknown. Here we report that the Cajal body is a major epitope in HeLa cells for an sDMA-specific antibody and that coilin is an sDMA-containing protein as analyzed by using the sDMA-specific antibody and matrix-assisted laser desorption ionization time of flight mass spectrometry. The methylation inhibitor 5′-deoxy-5′-methylthioadenosine reduces the levels of coilin methylation and causes the appearance of SMN-positive gems. In cells devoid of Cajal bodies, such as primary fibroblasts, sDMA-containing proteins concentrated in speckles. Cells from a patient with spinal muscular atrophy, containing low levels of the methyl-binding protein SMN, localized sDMA-containing proteins in the nucleoplasm as a discrete granular pattern. Splicing reactions are efficiently inhibited by using the sDMA-specific antibody or by using hypomethylated nuclear extracts, showing that active spliceosomes contain sDMA polypeptides and suggesting that arginine methylation is important for efficient pre-mRNA splicing. Our findings support a model in which arginine methylation is important for the localization of coilin and SMN in Cajal bodies.


Molecular & Cellular Proteomics | 2010

A Quantitative Proteomics Analysis of Subcellular Proteome Localization and Changes Induced by DNA Damage

François-Michel Boisvert; Yun Wah Lam; Douglas J. Lamont; Angus I. Lamond

A major challenge in cell biology is to identify the subcellular distribution of proteins within cells and to characterize how protein localization changes under different cell growth conditions and in response to stress and other external signals. Protein localization is usually determined either by microscopy or by using cell fractionation combined with protein blotting techniques. Both these approaches are intrinsically low throughput and limited to the analysis of known components. Here we use mass spectrometry-based proteomics to provide an unbiased, quantitative, and high throughput approach for measuring the subcellular distribution of the proteome, termed “spatial proteomics.” The spatial proteomics method analyzes a whole cell extract created by recombining differentially labeled subcellular fractions derived from cells in which proteins have been mass-labeled with heavy isotopes. This was used here to measure the relative distribution between cytoplasm, nucleus, and nucleolus of over 2,000 proteins in HCT116 cells. The data show that, at steady state, the proteome is predominantly partitioned into specific subcellular locations with only a minor subset of proteins equally distributed between two or more compartments. Spatial proteomics also facilitates a proteome-wide comparison of changes in protein localization in response to a wide range of physiological and experimental perturbations, shown here by characterizing dynamic changes in protein localization elicited during the cellular response to DNA damage following treatment of HCT116 cells with etoposide. DNA damage was found to cause dissociation of the proteasome from inhibitory proteins and assembly chaperones in the cytoplasm and relocation to associate with proteasome activators in the nucleus.


Journal of Biological Chemistry | 2002

Human ING1 Proteins Differentially Regulate Histone Acetylation

Diego Vieyra; Robbie Loewith; Michelle S. Scott; Paul Bonnefin; François-Michel Boisvert; Parneet Cheema; Svitlana Pastyryeva; Maria Meijer; Randal N. Johnston; David P. Bazett-Jones; Steven B. McMahon; Michael D. Cole; Dallan Young; Karl Riabowol

ING1 proteins are nuclear, growth inhibitory, and regulate apoptosis in different experimental systems. Here we show that similar to their yeast homologs, human ING1 proteins interact with proteins associated with histone acetyltransferase (HAT) activity, such as TRRAP, PCAF, CBP, and p300. Human ING1 immunocomplexes contain HAT activity, and overexpression of p33ING1b, but not of p47ING1a, induces hyperacetylation of histones H3 and H4, in vitro and in vivo at the single cell level. p47ING1a inhibits histone acetylation in vitro and in vivo and binds the histone deacetylase HDAC1. Finally, we present evidence indicating that p33ING1b affects the degree of physical association between proliferating cell nuclear antigen (PCNA) and p300, an association that has been proposed to link DNA repair to chromatin remodeling. Together with the finding that human ING1 proteins bind PCNA in a DNA damage-dependent manner, these data suggest that ING1 proteins provide a direct linkage between DNA repair, apoptosis, and chromatin remodeling via multiple HAT·ING1·PCNA protein complexes.


Science Signaling | 2005

Protein Interfaces in Signaling Regulated by Arginine Methylation

François-Michel Boisvert; Carol Anne Chénard; Stéphane Richard

Posttranslational modifications are well-known effectors of signal transduction. Arginine methylation is a covalent modification that results in the addition of methyl groups to the nitrogen atoms of the arginine side chains. A probable role of arginine methylation in signal transduction is emerging with the identification of new arginine-methylated proteins. However, the functional consequences of arginine methylation and its mode of regulation remain unknown. The identification of the protein arginine methyltransferase family and the development of methylarginine-specific antibodies have raised renewed interest in this modification during the last decade. Arginine methylation was mainly observed on abundant proteins such as RNA-binding proteins and histones, but recent advances have revealed a plethora of arginine-methylated proteins implicated in a variety of cellular processes, including signaling by interferon and cytokines, and in T cell signaling. We discuss these recent advances and the role of arginine methylation in signal transduction. Posttranslational covalent modifications of proteins provide a major mechanism for cellular signal transduction. Arginine methylation is a covalent modification that results in the addition of methyl groups on the arginine side chains catalyzed by members of the protein arginine methyltransferase (PRMT) family. Identification of several arginine-methylated proteins indicates that arginine methylation influences several signaling pathways. Involvement of PRMT1, the major arginine methyltransferase, in T cell signaling, in response to lipopolysaccharides, in the stabilization of tumor necrosis factor–α mRNA, and in cytokine responses implicates this posttranslational modification in regulation of cell proliferation and antiviral responses. Arginine methylation can regulate protein-protein interactions. SH3 domains that normally associate with polyproline-rich ligands fail to do so when the neighboring arginine is dimethylated. Many other examples have now been documented, including protein interactions that are positively regulated by arginine methylation. This review focuses on how arginine methylation is implicated in protein-protein interactions that influence cell signaling.


Journal of Cell Biology | 2007

Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins

Graydon B. Gonsalvez; Liping Tian; Jason K. Ospina; François-Michel Boisvert; Angus I. Lamond; A. Gregory Matera

Small nuclear ribonucleoproteins (snRNPs) are core components of the spliceosome. The U1, U2, U4, and U5 snRNPs each contain a common set of seven Sm proteins. Three of these Sm proteins are posttranslationally modified to contain symmetric dimethylarginine (sDMA) residues within their C-terminal tails. However, the precise function of this modification in the snRNP biogenesis pathway is unclear. Several lines of evidence suggest that the methyltransferase protein arginine methyltransferase 5 (PRMT5) is responsible for sDMA modification of Sm proteins. We found that in human cells, PRMT5 and a newly discovered type II methyltransferase, PRMT7, are each required for Sm protein sDMA modification. Furthermore, we show that the two enzymes function nonredundantly in Sm protein methylation. Lastly, we provide in vivo evidence demonstrating that Sm protein sDMA modification is required for snRNP biogenesis in human cells.

Collaboration


Dive into the François-Michel Boisvert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexis Gonneaud

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Claude Asselin

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge