David P. Curley
Brigham and Women's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David P. Curley.
Nature Genetics | 2009
David Dankort; David P. Curley; Robert A. Cartlidge; Betsy Nelson; Anthony N. Karnezis; William Damsky; Mingjian J. You; Ronald A. DePinho; Martin McMahon; Marcus Bosenberg
Mutational activation of BRAF is the earliest and most common genetic alteration in human melanoma. To build a model of human melanoma, we generated mice with conditional melanocyte-specific expression of BRafV600E. Upon induction of BRafV600E expression, mice developed benign melanocytic hyperplasias that failed to progress to melanoma over 15–20 months. By contrast, expression of BRafV600E combined with Pten tumor suppressor gene silencing elicited development of melanoma with 100% penetrance, short latency and with metastases observed in lymph nodes and lungs. Melanoma was prevented by inhibitors of mTorc1 (rapamycin) or MEK1/2 (PD325901) but, upon cessation of drug administration, mice developed melanoma, indicating the presence of long-lived melanoma-initiating cells in this system. Notably, combined treatment with rapamycin and PD325901 led to shrinkage of established melanomas. These mice, engineered with a common genetic profile to human melanoma, provide a system to study melanomas cardinal feature of metastasis and for preclinical evaluation of agents designed to prevent or treat metastatic disease.
Cancer Cell | 2002
Louise M. Kelly; Jin-Chen Yu; Christina L. Boulton; Mutiah Apatira; Jason Li; Carol Sullivan; Ifor R. Williams; Sonia M Amaral; David P. Curley; Nicole Duclos; Donna Neuberg; Robert M. Scarborough; Anjali Pandey; Stanley J. Hollenbach; Keith Abe; Nathalie Lokker; D. Gary Gilliland; Neill A. Giese
Up to 30% of acute myelogenous leukemia (AML) patients harbor an activating internal tandem duplication (ITD) within the juxtamembrane domain of the FLT3 receptor, suggesting that it may be a target for kinase inhibitor therapy. For this purpose we have developed CT53518, a potent antagonist that inhibits FLT3, platelet-derived growth factor receptor (PDGFR), and c-Kit (IC(50) approximately 200 nM), while other tyrosine or serine/threonine kinases were not significantly inhibited. In Ba/F3 cells expressing different FLT3-ITD mutants, CT53518 inhibited IL-3-independent cell growth and FLT3-ITD autophosphorylation with an IC(50) of 10-100 nM. In human FLT3-ITD-positive AML cell lines, CT53518 induced apoptosis and inhibited FLT3-ITD phosphorylation, cellular proliferation, and signaling through the MAP kinase and PI3 kinase pathways. Therapeutic efficacy of CT53518 was demonstrated both in a nude mouse model and in a murine bone marrow transplant model of FLT3-ITD-induced disease.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Louise M. Kelly; Jeffrey L. Kutok; Ifor R. Williams; Christina L. Boulton; Sonia M Amaral; David P. Curley; Timothy J. Ley; D. Gary Gilliland
Acute promyelocytic leukemia (APL) cells invariably express aberrant fusion proteins involving the retinoic acid receptor α (RARα). The most common fusion partner is promyelocytic leukemia protein (PML), which is fused to RARα in the balanced reciprocal chromosomal translocation, t(15;17)(q22:q11). Expression of PML/RARα from the cathepsin G promoter in transgenic mice causes a nonfatal myeloproliferative syndrome in all mice; about 15% go on to develop APL after a long latent period, suggesting that additional mutations are required for the development of APL. A candidate target gene for a second mutation is FLT3, because it is mutated in approximately 40% of human APL cases. Activating mutations in FLT3, including internal tandem duplication (ITD) in the juxtamembrane domain, transform hematopoietic cell lines to factor independent growth. FLT3-ITDs also induce a myeloproliferative disease in a murine bone marrow transplant model, but are not sufficient to cause AML. Here, we test the hypothesis that PML/RARα can cooperate with FLT3-ITD to induce an APL-like disease in the mouse. Retroviral transduction of FLT3-ITD into bone marrow cells obtained from PML/RARα transgenic mice results in a short latency APL-like disease with complete penetrance. This disease resembles the APL-like disease that occurs with long latency in the PML/RARα transgenics, suggesting that activating mutations in FLT3 can functionally substitute for the additional mutations that occur during mouse APL progression. The leukemia is transplantable to secondary recipients and is ATRA responsive. These observations document cooperation between PML/RARα and FLT3-ITD in development of the murine APL phenotype.
Cancer Cell | 2003
Jan Cools; Elizabeth H. Stover; Christina L. Boulton; Jason Gotlib; Robert D Legare; Sonia M Amaral; David P. Curley; Nicole Duclos; Rebecca Rowan; Jeffery L. Kutok; Benjamin H. Lee; Ifor R. Williams; Steven Coutre; Richard Stone; Daniel J. DeAngelo; Peter Marynen; Paul W. Manley; Thomas Meyer; Doriano Fabbro; Donna Neuberg; Ellen Weisberg; James D. Griffin; D. Gary Gilliland
FIP1L1-PDGFRalpha causes hypereosinophilic syndrome (HES) and is inhibited by the tyrosine kinase inhibitor imatinib (Gleevec). Imatinib is a potent inhibitor of ABL, ARG, PDGFRalpha, PDGFRbeta, and KIT and induces durable hematologic responses in HES patients. However, we observed relapse with resistance to imatinib as consequence of a T674I mutation in FIP1L1-PDGFRalpha, analogous to the imatinib-resistant T315I mutation in BCR-ABL. We developed a murine bone marrow transplant model of FIP1L1-PDGFRalpha-induced myeloproliferative disease to evaluate the efficacy of PKC412, an alternative inhibitor of PDGFRalpha, for the treatment of HES. PKC412 is effective for treatment of FIP1L1-PDGFRalpha-induced disease and of imatinib-induced resistance due to the T674I mutation. Our data establish PKC412 as molecularly targeted therapy for HES and other diseases expressing activated PDGFRalpha and demonstrate the potential of alternative kinase inhibitors to overcome resistance in target tyrosine kinases.
Cancer Research | 2010
Matthew A. Held; David P. Curley; David Dankort; Martin McMahon; Viswanathan Muthusamy; Marcus Bosenberg
Questions persist about the nature and number of cells with tumor-propagating capability in different types of cancer, including melanoma. In part, this is because identification and characterization of purified tumorigenic subsets of cancer cells has not been achieved to date. Here, we report tumor formation after injection of single purified melanoma cells derived from three novel mouse models. Tumor formation occurred after every injection of individual CD34+p75- melanoma cells, with intermediate rates using CD34-p75- cells, and rarely with CD34-p75+ cells. These findings suggest that tumorigenic melanoma cells may be more common than previously thought and establish that multiple distinct populations of melanoma-propagating cells (MPC) can exist within a single tumor. Interestingly, individual CD34-p75- MPCs could regenerate cellular heterogeneity after tumor formation in mice or multiple passages in vitro, whereas CD34+p75- MPCs underwent self-renewal only, showing that reestablishment of tumor heterogeneity is not always a characteristic of individual cells capable of forming tumors. Functionally, single purified MPCs were more resistant to chemotherapy than non-MPCs. We anticipate that purification of these MPCs may allow a more comprehensive evaluation of the molecular features that define tumor-forming capability and chemotherapeutic resistance in melanoma.
Oncogene | 2005
Benjamin H. Lee; Ifor R. Williams; Ema Anastasiadou; Christina L. Boulton; Sarah W Joseph; Sonia M Amaral; David P. Curley; Nicole Duclos; Brian J. P. Huntly; Doriano Fabbro; James D. Griffin; D G Gilliland
Activating FMS-like tyrosine kinase 3 (FLT3) mutations have been identified in ∼30% of patients with acute myelogenous leukemia (AML), and recently in a smaller subset of patients with acute lymphoblastic leukemia (ALL). To explore the in vivo consequences of an activating FLT3 internal tandem duplication mutation (FLT3-ITD), we created a transgenic mouse model in which FLT3-ITD was expressed under the control of the vav hematopoietic promoter. Five independent lines of vav-FLT3-ITD transgenic mice developed a myeloproliferative disease with high penetrance and a disease latency of 6–12 months. The phenotype was characterized by splenomegaly, megakaryocytic hyperplasia, and marked thrombocythemia, but without leukocytosis, polycythemia, or marrow fibrosis, displaying features reminiscent of the human disease essential thrombocythemia (ET). Clonal immature B- or T-lymphoid disease was observed in two additional founder mice, respectively, that could be secondarily transplanted to recipient mice that rapidly developed lymphoid disease. Treatment of these mice with the FLT3 tyrosine kinase inhibitor, PKC412, resulted in suppression of disease and a statistically significant prolongation of survival. These results demonstrate that FLT3-ITD is capable of inducing myeloproliferative as well as lymphoid disease, and indicate that small-molecule tyrosine kinase inhibitors may be an effective treatment for lymphoid malignancies in humans that are associated with activating mutations in FLT3.
Cancer Cell | 2015
William Damsky; Goran Micevic; Katrina Meeth; Viswanathan Muthusamy; David P. Curley; Manjula Santhanakrishnan; Ildiko Erdelyi; James T. Platt; Laura Huang; Nicholas Theodosakis; M. Raza Zaidi; Scott Tighe; Michael A. Davies; David Dankort; Martin McMahon; Glenn Merlino; Nabeel Bardeesy; Marcus Bosenberg
Braf(V600E) induces benign, growth-arrested melanocytic nevus development, but also drives melanoma formation. Cdkn2a loss in Braf(V600E) melanocytes in mice results in rare progression to melanoma, but only after stable growth arrest as nevi. Immediate progression to melanoma is prevented by upregulation of miR-99/100, which downregulates mTOR and IGF1R signaling. mTORC1 activation through Stk11 (Lkb1) loss abrogates growth arrest of Braf(V600E) melanocytic nevi, but is insufficient for complete progression to melanoma. Cdkn2a loss is associated with mTORC2 and Akt activation in human and murine melanocytic neoplasms. Simultaneous Cdkn2a and Lkb1 inactivation in Braf(V600E) melanocytes results in activation of both mTORC1 and mTORC2/Akt, inducing rapid melanoma formation in mice. In this model, activation of both mTORC1/2 is required for Braf-induced melanomagenesis.
Cancer Research | 2007
Guang Yang; David P. Curley; Marcus Bosenberg; Hensin Tsao
Despite an extensive body of evidence linking UV radiation and melanoma tumorigenesis, a clear mechanistic understanding of this process is still lacking. Because heritable mutations in both INK4a and the nucleotide excision repair (NER) pathway predispose individuals to melanoma development, we set out to test the hypothesis that abrogation of NER, by deletion of the xeroderma pigmentosum C (Xpc) gene, will heighten melanoma photocarcinogenesis in an Ink4a-Arf-deficient background. Experimentally, we generated a strain of mice doubly deficient in Xpc and Ink4a-Arf and subjected wild-type, Xpc-/-Ink4a-Arf+/+, Xpc-/-Ink4a-Arf-/-, and Xpc+/+Ink4a-Arf-/- mice to a single neonatal (day P3) dose of UVB without additional chemical promotion. Indeed, there was a significant increase in the development of dermal spindle/epithelioid cell melanomas in Xpc-/-Ink4a-Arf-/- mice when compared with Xpc+/+Ink4a-Arf-/- mice (P = 0.005); wild-type and Xpc-/-Ink4a-Arf+/+ mice failed to develop tumors. These neoplasms bore a striking histologic resemblance to melanomas that arise in the Tyr-vHRAS/Ink4a-Arf-/- context and often expressed melanocyte differentiation marker Tyrp1, thus supporting their melanocytic origination. All strains, except wild-type mice, developed pigmented and non-pigmented epidermal-derived keratinocytic cysts, whereas Xpc+/+Ink4a-Arf-/- mice exhibited the greatest propensity for squamous cell carcinoma development. We then screened for NRas, HRas, Kras, and BRaf mutations in tumor tissue and detected a higher frequency of rare Kras(Q61) alterations in tumors from Xpc-/-Ink4a-Arf-/- mice compared with Xpc+/+Ink4a-Arf-/- mice (50% versus 7%, P = 0.033). Taken together, results from this novel UV-inducible melanoma model suggest that NER loss, in conjunction with Ink4a-Arf inactivation, can drive melanoma photocarcinogenesis possibly through signature Kras mutagenesis.
Epilepsia | 2014
Vincent Alvarez; M. Brandon Westover; Frank W. Drislane; Barbara A. Dworetzky; David P. Curley; Jong Woo Lee; Andrea O. Rossetti
Because early etiologic identification is critical to select appropriate specific status epilepticus (SE) management, we aim to validate a clinical tool we developed that uses history and readily available investigations to guide prompt etiologic assessment.
American Journal of Emergency Medicine | 2014
Jiraporn Sri-on; Yuchiao Chang; David P. Curley; Carlos A. Camargo; Joel S. Weissman; Sara J. Singer; Shan W. Liu
BACKGROUND Hospital crowding and emergency department (ED) boarding are large and growing problems. To date, there has been a paucity of information regarding the quality of care received by patients boarding in the ED compared with the care received by patients on an inpatient unit. We compared the rate of delays and adverse events at the event level that occur while boarding in the ED vs while on an inpatient unit. METHODS This study was a secondary analysis of data from medical record review and administrative databases at 2 urban academic teaching hospitals from August 1, 2004, through January 31, 2005. We measured delayed repeat cardiac enzymes, delayed partial thromboplastin time level checks, delayed antibiotic administration, delayed administration of home medications, and adverse events. We compared the incidence of events during ED boarding vs while on an inpatient unit. RESULTS Among 1431 patient medical records, we identified 1016 events. Emergency department boarding was associated with an increased risk of home medication delays (risk ratio [RR], 1.54; 95% confidence interval [CI], 1.26-1.88), delayed antibiotic administration (RR, 2.49; 95% CI, 1.72-3.52), and adverse events (RR, 2.36; 95% CI, 1.15-4.72). On the contrary, ED boarding was associated with fewer delays in repeat cardiac enzymes (RR, 0.17; 95% CI, 0.09-0.27) and delayed partial thromboplastin time checks (RR, 0.54; 95% CI, 0.27-0.96). CONCLUSION Compared with inpatient units, ED boarding was associated with more medication-related delays and adverse events but fewer laboratory-related delays. Until we can eliminate ED boarding, it is critical to identify areas for improvement.