Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David P. Wipf is active.

Publication


Featured researches published by David P. Wipf.


IEEE Transactions on Signal Processing | 2004

Sparse Bayesian learning for basis selection

David P. Wipf; Bhaskar D. Rao

Sparse Bayesian learning (SBL) and specifically relevance vector machines have received much attention in the machine learning literature as a means of achieving parsimonious representations in the context of regression and classification. The methodology relies on a parameterized prior that encourages models with few nonzero weights. In this paper, we adapt SBL to the signal processing problem of basis selection from overcomplete dictionaries, proving several results about the SBL cost function that elucidate its general behavior and provide solid theoretical justification for this application. Specifically, we have shown that SBL retains a desirable property of the /spl lscr//sub 0/-norm diversity measure (i.e., the global minimum is achieved at the maximally sparse solution) while often possessing a more limited constellation of local minima. We have also demonstrated that the local minima that do exist are achieved at sparse solutions. Later, we provide a novel interpretation of SBL that gives us valuable insight into why it is successful in producing sparse representations. Finally, we include simulation studies comparing sparse Bayesian learning with basis pursuit and the more recent FOCal Underdetermined System Solver (FOCUSS) class of basis selection algorithms. These results indicate that our theoretical insights translate directly into improved performance.


IEEE Transactions on Signal Processing | 2007

An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem

David P. Wipf; Bhaskar D. Rao

Given a large overcomplete dictionary of basis vectors, the goal is to simultaneously represent L>1 signal vectors using coefficient expansions marked by a common sparsity profile. This generalizes the standard sparse representation problem to the case where multiple responses exist that were putatively generated by the same small subset of features. Ideally, the associated sparse generating weights should be recovered, which can have physical significance in many applications (e.g., source localization). The generic solution to this problem is intractable and, therefore, approximate procedures are sought. Based on the concept of automatic relevance determination, this paper uses an empirical Bayesian prior to estimate a convenient posterior distribution over candidate basis vectors. This particular approximation enforces a common sparsity profile and consistently places its prominent posterior mass on the appropriate region of weight-space necessary for simultaneous sparse recovery. The resultant algorithm is then compared with multiple response extensions of matching pursuit, basis pursuit, FOCUSS, and Jeffreys prior-based Bayesian methods, finding that it often outperforms the others. Additional motivation for this particular choice of cost function is also provided, including the analysis of global and local minima and a variational derivation that highlights the similarities and differences between the proposed algorithm and previous approaches.


IEEE Journal of Selected Topics in Signal Processing | 2010

Iterative Reweighted

David P. Wipf; Srikantan S. Nagarajan

A variety of practical methods have recently been introduced for finding maximally sparse representations from overcomplete dictionaries, a central computational task in compressive sensing applications as well as numerous others. Many of the underlying algorithms rely on iterative reweighting schemes that produce more focal estimates as optimization progresses. Two such variants are iterative reweighted l1 and l2 minimization; however, some properties related to convergence and sparse estimation, as well as possible generalizations, are still not clearly understood or fully exploited. In this paper, we make the distinction between separable and non-separable iterative reweighting algorithms. The vast majority of existing methods are separable, meaning the weighting of a given coefficient at each iteration is only a function of that individual coefficient from the previous iteration (as opposed to dependency on all coefficients). We examine two such separable reweighting schemes: an l2 method from Chartrand and Yin (2008) and an l1 approach from Candes (2008), elaborating on convergence results and explicit connections between them. We then explore an interesting non-separable alternative that can be implemented via either l2 or l1 reweighting and maintains several desirable properties relevant to sparse recovery despite a highly non-convex underlying cost function. For example, in the context of canonical sparse estimation problems, we prove uniform superiority of this method over the minimum l1 solution in that, 1) it can never do worse when implemented with reweighted l1, and 2) for any dictionary and sparsity profile, there will always exist cases where it does better. These results challenge the prevailing reliance on strictly convex (and separable) penalty functions for finding sparse solutions. We then derive a new non-separable variant with similar properties that exhibits further performance improvements in empirical tests. Finally, we address natural extensions to group sparsity problems and non-negative sparse coding.


NeuroImage | 2009

\ell_1

David P. Wipf; Srikantan S. Nagarajan

The ill-posed nature of the MEG (or related EEG) source localization problem requires the incorporation of prior assumptions when choosing an appropriate solution out of an infinite set of candidates. Bayesian approaches are useful in this capacity because they allow these assumptions to be explicitly quantified using postulated prior distributions. However, the means by which these priors are chosen, as well as the estimation and inference procedures that are subsequently adopted to affect localization, have led to a daunting array of algorithms with seemingly very different properties and assumptions. From the vantage point of a simple Gaussian scale mixture model with flexible covariance components, this paper analyzes and extends several broad categories of Bayesian inference directly applicable to source localization including empirical Bayesian approaches, standard MAP estimation, and multiple variational Bayesian (VB) approximations. Theoretical properties related to convergence, global and local minima, and localization bias are analyzed and fast algorithms are derived that improve upon existing methods. This perspective leads to explicit connections between many established algorithms and suggests natural extensions for handling unknown dipole orientations, extended source configurations, correlated sources, temporal smoothness, and computational expediency. Specific imaging methods elucidated under this paradigm include the weighted minimum l(2)-norm, FOCUSS, minimum current estimation, VESTAL, sLORETA, restricted maximum likelihood, covariance component estimation, beamforming, variational Bayes, the Laplace approximation, and automatic relevance determination, as well as many others. Perhaps surprisingly, all of these methods can be formulated as particular cases of covariance component estimation using different concave regularization terms and optimization rules, making general theoretical analyses and algorithmic extensions/improvements particularly relevant.


IEEE Transactions on Information Theory | 2011

and

David P. Wipf; Bhaskar D. Rao; Srikantan S. Nagarajan

Many practical methods for finding maximally sparse coefficient expansions involve solving a regression problem using a particular class of concave penalty functions. From a Bayesian perspective, this process is equivalent to maximum a posteriori (MAP) estimation using a sparsity-inducing prior distribution (Type I estimation). Using variational techniques, this distribution can always be conveniently expressed as a maximization over scaled Gaussian distributions modulated by a set of latent variables. Alternative Bayesian algorithms, which operate in latent variable space leveraging this variational representation, lead to sparse estimators reflecting posterior information beyond the mode (Type II estimation). Currently, it is unclear how the underlying cost functions of Type I and Type II relate, nor what relevant theoretical properties exist, especially with regard to Type II. Herein a common set of auxiliary functions is used to conveniently express both Type I and Type II cost functions in either coefficient or latent variable space facilitating direct comparisons. In coefficient space, the analysis reveals that Type II is exactly equivalent to performing standard MAP estimation using a particular class of dictionary- and noise-dependent, nonfactorial coefficient priors. One prior (at least) from this class maintains several desirable advantages over all possible Type I methods and utilizes a novel, nonconvex approximation to the l0 norm with most, and in certain quantifiable conditions all, local minima smoothed away. Importantly, the global minimum is always left unaltered unlike standard l1-norm relaxations. This ensures that any appropriate descent method is guaranteed to locate the maximally sparse solution.


NeuroImage | 2010

\ell_2

David P. Wipf; Julia P. Owen; Hagai Attias; Kensuke Sekihara; Srikantan S. Nagarajan

The synchronous brain activity measured via MEG (or EEG) can be interpreted as arising from a collection (possibly large) of current dipoles or sources located throughout the cortex. Estimating the number, location, and time course of these sources remains a challenging task, one that is significantly compounded by the effects of source correlations and unknown orientations and by the presence of interference from spontaneous brain activity, sensor noise, and other artifacts. This paper derives an empirical Bayesian method for addressing each of these issues in a principled fashion. The resulting algorithm guarantees descent of a cost function uniquely designed to handle unknown orientations and arbitrary correlations. Robust interference suppression is also easily incorporated. In a restricted setting, the proposed method is shown to produce theoretically zero reconstruction error estimating multiple dipoles even in the presence of strong correlations and unknown orientations, unlike a variety of existing Bayesian localization methods or common signal processing techniques such as beamforming and sLORETA. Empirical results on both simulated and real data sets verify the efficacy of this approach.


international conference on computer vision | 2013

Methods for Finding Sparse Solutions

Xudong Cao; David P. Wipf; Fang Wen; Genquan Duan; Jian Sun

Face verification involves determining whether a pair of facial images belongs to the same or different subjects. This problem can prove to be quite challenging in many important applications where labeled training data is scarce, e.g., family album photo organization software. Herein we propose a principled transfer learning approach for merging plentiful source-domain data with limited samples from some target domain of interest to create a classifier that ideally performs nearly as well as if rich target-domain data were present. Based upon a surprisingly simple generative Bayesian model, our approach combines a KL-divergence based regularizer/prior with a robust likelihood function leading to a scalable implementation via the EM algorithm. As justification for our design choices, we later use principles from convex analysis to recast our algorithm as an equivalent structured rank minimization problem leading to a number of interesting insights related to solution structure and feature-transform invariance. These insights help to both explain the effectiveness of our algorithm as well as elucidate a wide variety of related Bayesian approaches. Experimental testing with challenging datasets validate the utility of the proposed algorithm.


computer vision and pattern recognition | 2005

A Unified Bayesian Framework for MEG/EEG Source Imaging

Joel C. McCall; Mohan M. Trivedi; David P. Wipf; Bhaskar D. Rao

In this paper, we demonstrate a driver intent inference system that is based on lane positional information, vehicle parameters, and driver head motion. We present robust computer vision methods for identifying and tracking freeway lanes and driver head motion. These algorithms are then applied and evaluated on real-world data that are collected in a modular intelligent vehicle test bed. Analysis of the data for lane change intent is performed using a sparse Bayesian learning methodology. Finally, the system as a whole is evaluated using a novel metric and real-world data of vehicle parameters, lane position, and driver head motion.


computer vision and pattern recognition | 2013

Latent Variable Bayesian Models for Promoting Sparsity

Haichao Zhang; David P. Wipf; Yanning Zhang

This paper presents a robust algorithm for estimating a single latent sharp image given multiple blurry and/or noisy observations. The underlying multi-image blind deconvolution problem is solved by linking all of the observations together via a Bayesian-inspired penalty function which couples the unknown latent image, blur kernels, and noise levels together in a unique way. This coupled penalty function enjoys a number of desirable properties, including a mechanism whereby the relative-concavity or shape is adapted as a function of the intrinsic quality of each blurry observation. In this way, higher quality observations may automatically contribute more to the final estimate than heavily degraded ones. The resulting algorithm, which requires no essential tuning parameters, can recover a high quality image from a set of observations containing potentially both blurry and noisy examples, without knowing a priori the degradation type of each observation. Experimental results on both synthetic and real-world test images clearly demonstrate the efficacy of the proposed method.


computer vision and pattern recognition | 2012

Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG

Satoshi Ikehata; David P. Wipf; Yasuyuki Matsushita; Kiyoharu Aizawa

This paper presents a robust photometric stereo method that effectively compensates for various non-Lambertian corruptions such as specularities, shadows, and image noise. We construct a constrained sparse regression problem that enforces both Lambertian, rank-3 structure and sparse, additive corruptions. A solution method is derived using a hierarchical Bayesian approximation to accurately estimate the surface normals while simultaneously separating the non-Lambertian corruptions. Extensive evaluations are performed that show state-of-the-art performance using both synthetic and real-world images.

Collaboration


Dive into the David P. Wipf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhaskar D. Rao

University of California

View shared research outputs
Top Co-Authors

Avatar

Kensuke Sekihara

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Wang

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haichao Zhang

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia P. Owen

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge