Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haichao Zhang is active.

Publication


Featured researches published by Haichao Zhang.


Nature | 2005

An inhibitor of Bcl-2 family proteins induces regression of solid tumours.

Tilman Oltersdorf; Steven W. Elmore; Alexander R. Shoemaker; Robert C. Armstrong; David J. Augeri; Barbara A. Belli; Milan Bruncko; Thomas L. Deckwerth; Jurgen Dinges; Philip J. Hajduk; Mary K. Joseph; Shinichi Kitada; Stanley J. Korsmeyer; Aaron R. Kunzer; Anthony Letai; Chi Li; Michael J. Mitten; David G. Nettesheim; Shi-Chung Ng; Paul Nimmer; Jacqueline M. O'Connor; Anatol Oleksijew; Andrew M. Petros; John C. Reed; Wang Shen; Stephen K. Tahir; Craig B. Thompson; Kevin J. Tomaselli; Baole Wang; Michael D. Wendt

Proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-XL and Bcl-2, are overexpressed in many cancers and contribute to tumour initiation, progression and resistance to therapy. Bcl-XL expression correlates with chemo-resistance of tumour cell lines, and reductions in Bcl-2 increase sensitivity to anticancer drugs and enhance in vivo survival. The development of inhibitors of these proteins as potential anti-cancer therapeutics has been previously explored, but obtaining potent small-molecule inhibitors has proved difficult owing to the necessity of targeting a protein–protein interaction. Here, using nuclear magnetic resonance (NMR)-based screening, parallel synthesis and structure-based design, we have discovered ABT-737, a small-molecule inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-XL and Bcl-w, with an affinity two to three orders of magnitude more potent than previously reported compounds. Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation. ABT-737 exhibits single-agent-mechanism-based killing of cells from lymphoma and small-cell lung carcinoma lines, as well as primary patient-derived cells, and in animal models, ABT-737 improves survival, causes regression of established tumours, and produces cures in a high percentage of the mice.


Nature Medicine | 2013

ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets

Andrew J. Souers; Joel D. Leverson; Erwin R. Boghaert; Scott L. Ackler; Nathaniel D. Catron; Jun Chen; Brian D Dayton; H. Ding; Sari H. Enschede; Wayne J. Fairbrother; David C. S. Huang; Sarah G. Hymowitz; Sha Jin; Seong Lin Khaw; Peter Kovar; Lloyd T. Lam; Jackie Lee; Heather Maecker; Kennan Marsh; Kylie D. Mason; Michael J. Mitten; Paul Nimmer; Anatol Oleksijew; Chang H. Park; Cheol-Min Park; Darren C. Phillips; Andrew W. Roberts; Deepak Sampath; John F. Seymour; Morey L. Smith

Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2–like 1 (BCL-XL), which has shown clinical efficacy in some BCL-2–dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-XL inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2–selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2–dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2–dependent hematological cancers.


Cancer Research | 2008

ABT-263: A Potent and Orally Bioavailable Bcl-2 Family Inhibitor

Christin Tse; Alexander R. Shoemaker; Jessica Adickes; Mark G. Anderson; Jun Chen; Sha Jin; Eric F. Johnson; Kennan Marsh; Michael J. Mitten; Paul Nimmer; Lisa R. Roberts; Stephen K. Tahir; Yu Xiao; Xiufen Yang; Haichao Zhang; Stephen W. Fesik; Saul H. Rosenberg; Steven W. Elmore

Overexpression of the prosurvival Bcl-2 family members (Bcl-2, Bcl-xL, and Mcl-1) is commonly associated with tumor maintenance, progression, and chemoresistance. We previously reported the discovery of ABT-737, a potent, small-molecule Bcl-2 family protein inhibitor. A major limitation of ABT-737 is that it is not orally bioavailable, which would limit chronic single agent therapy and flexibility to dose in combination regimens. Here we report the biological properties of ABT-263, a potent, orally bioavailable Bad-like BH3 mimetic (K(i)s of <1 nmol/L for Bcl-2, Bcl-xL, and Bcl-w). The oral bioavailability of ABT-263 in preclinical animal models is 20% to 50%, depending on formulation. ABT-263 disrupts Bcl-2/Bcl-xL interactions with pro-death proteins (e.g., Bim), leading to the initiation of apoptosis within 2 hours posttreatment. In human tumor cells, ABT-263 induces Bax translocation, cytochrome c release, and subsequent apoptosis. Oral administration of ABT-263 alone induces complete tumor regressions in xenograft models of small-cell lung cancer and acute lymphoblastic leukemia. In xenograft models of aggressive B-cell lymphoma and multiple myeloma where ABT-263 exhibits modest or no single agent activity, it significantly enhances the efficacy of clinically relevant therapeutic regimens. These data provide the rationale for clinical trials evaluating ABT-263 in small-cell lung cancer and B-cell malignancies. The oral efficacy of ABT-263 should provide dosing flexibility to maximize clinical utility both as a single agent and in combination regimens.


Nature | 1999

NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP

Chaohong Sun; Mengli Cai; Angelo Gunasekera; Robert P. Meadows; Hong Wang; Jun Chen; Haichao Zhang; Wei Wu; Nan Xu; Shi-Chung Ng; Stephen W. Fesik

The inhibitor-of-apoptosis (IAP) family of proteins, originally identified in baculoviruses, regulate programmed cell death in a variety of organisms. IAPs inhibit specific enzymes (caspases) in the death cascade and contain one to three modules of a common 70-amino-acid motif called the BIR domain. Here we describe the nuclear magnetic resonance structure of a region encompassing the second BIR domain (BIR2) of a human IAP family member, XIAP (also called hILP or MIHA). The structure of the BIR domain consists of a three-stranded antiparallel β-sheet and four α-helices and resembles a classical zinc finger. Unexpectedly, conserved amino acids within the linker region between the BIR1 and BIR2 domains were found to be critical for inhibiting caspase-3. The absence or presence of these residues may explain the differences in caspase inhibition observed for different truncated and full-length IAPs. Our data further indicate that these residues may bind to the active site and that the BIR domain may interact with an adjacent site on the enzyme.


Journal of Medicinal Chemistry | 2008

Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins.

Cheol-Min Park; Milan Bruncko; Jessica Adickes; Joy Bauch; Hong Ding; Aaron R. Kunzer; Kennan Marsh; Paul Nimmer; Alexander R. Shoemaker; Xiaohong Song; Stephen K. Tahir; Christin Tse; Xilu Wang; Michael D. Wendt; Xiufen Yang; Haichao Zhang; Stephen W. Fesik; Saul H. Rosenberg; Steven W. Elmore

Overexpression of prosurvival proteins such as Bcl-2 and Bcl-X L has been correlated with tumorigenesis and resistance to chemotherapy, and thus, the development of antagonists of these proteins may provide a novel means for the treatment of cancer. We recently described the discovery of 1 (ABT-737), which binds Bcl-2, Bcl-X L, and Bcl-w with high affinity, shows robust antitumor activity in murine tumor xenograft models, but is not orally bioavailable. Herein, we report that targeted modifications at three key positions of 1 resulted in a 20-fold improvement in the pharmacokinetic/pharmacodynamic relationship (PK/PD) between oral exposure (AUC) and in vitro efficacy in human tumor cell lines (EC 50). The resulting compound, 2 (ABT-263), is orally efficacious in an established xenograft model of human small cell lung cancer, inducing complete tumor regressions in all animals. Compound 2 is currently in multiple phase 1 clinical trials in patients with small cell lung cancer and hematological malignancies.


Science Translational Medicine | 2015

Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy

Joel D. Leverson; Darren C. Phillips; Michael J. Mitten; Erwin R. Boghaert; Stephen K. Tahir; Lisa D. Belmont; Paul Nimmer; Yu Xiao; Xiaoju Max Ma; Kym N. Lowes; Peter Kovar; Jun Chen; Sha Jin; Morey L. Smith; John Xue; Haichao Zhang; Anatol Oleksijew; Terrance J. Magoc; Kedar S. Vaidya; Daniel H. Albert; Jacqueline M. Tarrant; Nghi La; Le Wang; Zhi-Fu Tao; Michael D. Wendt; Deepak Sampath; Saul H. Rosenberg; Chris Tse; David C. S. Huang; Wayne J. Fairbrother

Selective inhibition of BCL-XL synergizes with docetaxel to inhibit the growth of solid tumors but does not inhibit granulopoiesis. A more refined antitumor strategy The BCL-2 family is a group of related proteins that regulate apoptosis in a variety of ways. The success of anticancer treatments often hinges on the ability to induce cancer cell death by apoptosis. As a result, there has been a great deal of interest in developing drugs that can inhibit the antiapoptotic members of the BCL-2 pathway. Unfortunately, some of these drugs are also associated with dose-limiting hematologic toxicities, such as neutropenia. Now, Leverson et al. have used a toolkit of BCL-2 family inhibitors with different specificities to show that specifically inhibiting BCL-XL (one member of this protein family) is effective for killing tumors, but without the common side effects seen with less selective drugs. The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2–selective inhibitor venetoclax (ABT-199/GDC-0199), which demonstrates robust activity in these cancers but spares platelets. Navitoclax has also been shown to enhance the efficacy of docetaxel in preclinical models of solid tumors, but clinical use of this combination has been limited by neutropenia. We used venetoclax and the BCL-XL–selective inhibitors A-1155463 and A-1331852 to assess the relative contributions of inhibiting BCL-2 or BCL-XL to the efficacy and toxicity of the navitoclax-docetaxel combination. Selective BCL-2 inhibition suppressed granulopoiesis in vitro and in vivo, potentially accounting for the exacerbated neutropenia observed when navitoclax was combined with docetaxel clinically. By contrast, selectively inhibiting BCL-XL did not suppress granulopoiesis but was highly efficacious in combination with docetaxel when tested against a range of solid tumors. Therefore, BCL-XL–selective inhibitors have the potential to enhance the efficacy of docetaxel in solid tumors and avoid the exacerbation of neutropenia observed with navitoclax. These studies demonstrate the translational utility of this toolkit of selective BCL-2 family inhibitors and highlight their potential as improved cancer therapeutics.


Cancer Research | 2006

A Small-Molecule Inhibitor of Bcl-XL Potentiates the Activity of Cytotoxic Drugs In vitro and In vivo

Alex R. Shoemaker; Anatol Oleksijew; Joy Bauch; Barbara A. Belli; Tony Borre; Milan Bruncko; Thomas Deckwirth; David J. Frost; Ken Jarvis; Mary K. Joseph; Kennan Marsh; William J. McClellan; Hugh N. Nellans; Shi-Chung Ng; Paul Nimmer; Jacqueline M. O'Connor; Tilman Oltersdorf; Weiguo Qing; Wang Shen; Jason Stavropoulos; Stephen K. Tahir; Baole Wang; Robert Warner; Haichao Zhang; Stephen W. Fesik; Saul H. Rosenberg; Steven W. Elmore

Inhibition of the prosurvival members of the Bcl-2 family of proteins represents an attractive strategy for the treatment of cancer. We have previously reported the activity of ABT-737, a potent inhibitor of Bcl-2, Bcl-X(L), and Bcl-w, which exhibits monotherapy efficacy in xenograft models of small-cell lung cancer and lymphoma and potentiates the activity of numerous cytotoxic agents. Here we describe the biological activity of A-385358, a small molecule with relative selectivity for binding to Bcl-X(L) versus Bcl-2 (K(i)s of 0.80 and 67 nmol/L for Bcl-X(L) and Bcl-2, respectively). This compound efficiently enters cells and co-localizes with the mitochondrial membrane. Although A-385358 shows relatively modest single-agent cytotoxic activity against most tumor cell lines, it has an EC(50) of <500 nmol/L in cells dependent on Bcl-X(L) for survival. In addition, A-385358 enhances the in vitro cytotoxic activity of numerous chemotherapeutic agents (paclitaxel, etoposide, cisplatin, and doxorubicin) in several tumor cell lines. In A549 non-small-cell lung cancer cells, A-385358 potentiates the activity of paclitaxel by as much as 25-fold. Importantly, A-385358 also potentiated the activity of paclitaxel in vivo. Significant inhibition of tumor growth was observed when A-385358 was added to maximally tolerated or half maximally tolerated doses of paclitaxel in the A549 xenograft model. In tumors, the combination therapy also resulted in a significant increase in mitotic arrest followed by apoptosis relative to paclitaxel monotherapy.


Molecular Cell | 2000

Crystal Structure and Mutagenic Analysis of the Inhibitor-of-Apoptosis Protein Survivin

Steven W. Muchmore; Jun Chen; Clarissa G. Jakob; Dorothy Zakula; Edmund D. Matayoshi; Wei Wu; Haichao Zhang; Fengzhi Li; Shi-Chung Ng; Dario C. Altieri

The coupling of apoptosis (programmed cell death) to the cell division cycle is essential for homeostasis and genomic integrity. Here, we report the crystal structure of survivin, an inhibitor of apoptosis, which has been implicated in both control of cell death and regulation of cell division. In addition to a conserved N-terminal Zn finger baculovirus IAP repeat, survivin forms a dimer through a symmetric interaction with an intermolecularly bound Zn atom located along the molecular dyad axis. The interaction of the dimer-related C-terminal alpha helices forms an extended surface of approximately 70 A in length. Mutagenesis analysis revealed that survivin dimerization and an extended negatively charged surface surrounding Asp-71 are required to counteract apoptosis and preserve ploidy. These findings may provide a structural basis for a dual role of survivin in inhibition of apoptosis and regulation of cell division.


ACS Medicinal Chemistry Letters | 2014

Discovery of a Potent and Selective BCL-XL Inhibitor with in Vivo Activity

Zhi-Fu Tao; Lisa A. Hasvold; Le Wang; Xilu Wang; Andrew M. Petros; Chang H. Park; Erwin R. Boghaert; Nathaniel D. Catron; Jun Chen; Peter M. Colman; Peter E. Czabotar; Kurt Deshayes; Wayne J. Fairbrother; John A. Flygare; Sarah G. Hymowitz; Sha Jin; Russell A. Judge; Michael F. T. Koehler; Peter Kovar; Guillaume Lessene; Michael J. Mitten; Chudi Ndubaku; Paul Nimmer; Hans E. Purkey; Anatol Oleksijew; Darren C. Phillips; Brad E. Sleebs; Brian J. Smith; Morey L. Smith; Stephen K. Tahir

A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses. A-1155463 thus represents an excellent tool molecule for studying BCL-XL biology as well as a productive lead structure for further optimization.


Oncogene | 2011

Mcl-1 is critical for survival in a subgroup of non-small-cell lung cancer cell lines

Haichao Zhang; S Guttikonda; L Roberts; T Uziel; Dimitri Semizarov; Steven W. Elmore; Joel D. Leverson; Lloyd T. Lam

Non-small-cell lung cancer (NSCLC) is the most deadly type of cancer in the United States and worldwide. Although new therapy is available, the survival rate of NSCLC patients remains low. One hallmark of cancer cells is defects in the apoptotic cell death program. In this study, we investigate the role of B-cell lymphoma 2 (Bcl-2) family members Bcl-2, Bcl-xL and Mcl-1, known to regulate cell survival and death, in a panel of fourteen NSCLC cell lines. NSCLC cell lines express high levels of Mcl-1 and Bcl-xL, but not Bcl-2. Silencing the expression of Mcl-1 with small interfering RNA (siRNA) oligonucleotides potently killed a subgroup of NSCLC cell lines. In contrast, Bcl-xL siRNA had no effect in these lines unless Mcl-1 siRNA was also introduced. Interestingly, high MCL1 to BCL-xl messenger RNA determines whether the cells depend on Mcl-1 for survival. We further investigated the role of Mcl-1 in NSCLC cells using a Mcl-1-dependent cell line, H23. The expression of a complementary DNA containing only the coding region of MCL1 rescued H23 cells from the toxicity of a 3′ untranslated region (UTR) targeting Mcl-1 siRNA but not a siRNA targeting the coding region of MCL1. Furthermore, we show that Mcl-1 sequesters the BH3-only protein Noxa and Bim and the apoptotic effector Bak. Not surprisingly, Noxa, Bim, or Bak knockdown partially rescued H23 cells from toxicity mediated by Mcl-1 siRNA to different degrees. Collectively, our results indicate that targeting Mcl-1 may improve therapy for a subset of NSCLC patients.

Collaboration


Dive into the Haichao Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen K. Tahir

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel D. Leverson

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Lloyd T. Lam

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Xue

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge