David Papo
Technical University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Papo.
Entropy | 2012
Massimiliano Zanin; Luciano Zunino; Osvaldo A. Rosso; David Papo
Entropy is a powerful tool for the analysis of time series, as it allows describing the probability distributions of the possible state of a system, and therefore the information encoded in it. Nevertheless, important information may be codified also in the temporal dynamics, an aspect which is not usually taken into account. The idea of calculating entropy based on permutation patterns (that is, permutations defined by the order relations among values of a time series) has received a lot of attention in the last years, especially for the understanding of complex and chaotic systems. Permutation entropy directly accounts for the temporal information contained in the time series; furthermore, it has the quality of simplicity, robustness and very low computational cost. To celebrate the tenth anniversary of the original work, here we analyze the theoretical foundations of the permutation entropy, as well as the main recent applications to the analysis of economical markets and to the understanding of biomedical systems.
Scientific Reports | 2013
Alessio Cardillo; Jesús Gómez-Gardeñes; Massimiliano Zanin; Miguel Romance; David Papo; Francisco del Pozo; Stefano Boccaletti
Many biological and man-made networked systems are characterized by the simultaneous presence of different sub-networks organized in separate layers, with links and nodes of qualitatively different types. While during the past few years theoretical studies have examined a variety of structural features of complex networks, the outstanding question is whether such features are characterizing all single layers, or rather emerge as a result of coarse-graining, i.e. when going from the multilayered to the aggregate network representation. Here we address this issue with the help of real data. We analyze the structural properties of an intrinsically multilayered real network, the European Air Transportation Multiplex Network in which each commercial airline defines a network layer. We examine how several structural measures evolve as layers are progressively merged together. In particular, we discuss how the topology of each layer affects the emergence of structural properties in the aggregate network.
Philosophical Transactions of the Royal Society B | 2014
David Papo; Javier M. Buldú; Stefano Boccaletti; Edward T. Bullmore
The first clear, recognizably scientific representations of the human brain were the drawings and engravings of the Renaissance anatomists. These prototype anatomical maps of brain organization demonstrated a physical structure somewhat walnut-like in appearance: an approximately symmetrical pair of
Physical Review Letters | 2014
Jacobo Aguirre; R. Sevilla-Escoboza; Ricardo Gutiérrez; David Papo; Javier M. Buldú
In this Letter we identify the general rules that determine the synchronization properties of interconnected networks. We study analytically, numerically, and experimentally how the degree of the nodes through which two networks are connected influences the ability of the whole system to synchronize. We show that connecting the high-degree (low-degree) nodes of each network turns out to be the most (least) effective strategy to achieve synchronization. We find the functional relation between synchronizability and size for a given network of networks, and report the existence of the optimal connector link weights for the different interconnection strategies. Finally, we perform an electronic experiment with two coupled star networks and conclude that the analytical results are indeed valid in the presence of noise and parameter mismatches.
Philosophical Transactions of the Royal Society B | 2014
David Papo; Massimiliano Zanin; José Ángel Pineda-Pardo; Stefano Boccaletti; Javier M. Buldú
Many physical and biological systems can be studied using complex network theory, a new statistical physics understanding of graph theory. The recent application of complex network theory to the study of functional brain networks has generated great enthusiasm as it allows addressing hitherto non-standard issues in the field, such as efficiency of brain functioning or vulnerability to damage. However, in spite of its high degree of generality, the theory was originally designed to describe systems profoundly different from the brain. We discuss some important caveats in the wholesale application of existing tools and concepts to a field they were not originally designed to describe. At the same time, we argue that complex network theory has not yet been taken full advantage of, as many of its important aspects are yet to make their appearance in the neuroscience literature. Finally, we propose that, rather than simply borrowing from an existing theory, functional neural networks can inspire a fundamental reformulation of complex network theory, to account for its exquisitely complex functioning mode.
Scientific Reports | 2012
Massimiliano Zanin; Pedro Sousa; David Papo; Ricardo Bajo; Juan Garcia-Prieto; Francisco del Pozo; Ernestina Menasalvas; Stefano Boccaletti
By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the networks indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.
Nature Physics | 2013
Jacobo Aguirre; David Papo; Javier M. Buldú
Networks competing for limited resources are often more vulnerable than isolated systems, but competition can also prove beneficial—and even prevent network failure in some cases. A new study identifies how best to link networks to capitalize on competition.
Physics Reports | 2016
Massimiliano Zanin; David Papo; Pedro A. C. Sousa; Ernestina Menasalvas; Andrea Nicchi; Elaine Kubik; Stefano Boccaletti
The increasing power of computer technology does not dispense with the need to extract meaningful in- formation out of data sets of ever growing size, and indeed typically exacerbates the complexity of this task. To tackle this general problem, two methods have emerged, at chronologically different times, that are now commonly used in the scientific community: data mining and complex network theory. Not only do complex network analysis and data mining share the same general goal, that of extracting information from complex systems to ultimately create a new compact quantifiable representation, but they also often address similar problems too. In the face of that, a surprisingly low number of researchers turn out to resort to both methodologies. One may then be tempted to conclude that these two fields are either largely redundant or totally antithetic. The starting point of this review is that this state of affairs should be put down to contingent rather than conceptual differences, and that these two fields can in fact advantageously be used in a synergistic manner. An overview of both fields is first provided, some fundamental concepts of which are illustrated. A variety of contexts in which complex network theory and data mining have been used in a synergistic manner are then presented. Contexts in which the appropriate integration of complex network metrics can lead to improved classification rates with respect to classical data mining algorithms and, conversely, contexts in which data mining can be used to tackle important issues in complex network theory applications are illustrated. Finally, ways to achieve a tighter integration between complex networks and data mining, and open lines of research are discussed.
Scientific Reports | 2013
I. Leyva; A. Navas; Irene Sendiña-Nadal; J. A. Almendral; Javier M. Buldú; Massimiliano Zanin; David Papo; Stefano Boccaletti
The emergence of dynamical abrupt transitions in the macroscopic state of a system is currently a subject of the utmost interest. The occurrence of a first-order phase transition to synchronization of an ensemble of networked phase oscillators was reported, so far, for very particular network architectures. Here, we show how a sharp, discontinuous transition can occur, instead, as a generic feature of networks of phase oscillators. Precisely, we set conditions for the transition from unsynchronized to synchronized states to be first-order, and demonstrate how these conditions can be attained in a very wide spectrum of situations. We then show how the occurrence of such transitions is always accompanied by the spontaneous setting of frequency-degree correlation features. Third, we show that the conditions for abrupt transitions can be even softened in several cases. Finally, we discuss, as a possible application, the use of this phenomenon to express magnetic-like states of synchronization.
Scientific Reports | 2012
Ricardo Gutiérrez; Irene Sendiña-Nadal; Massimiliano Zanin; David Papo; Stefano Boccaletti
We report on a generic procedure to steer (target) a networks dynamics towards a given, desired evolution. The problem is here tackled through a Master Stability Function approach, assessing the stability of the aimed dynamics, and through a selection of nodes to be targeted. We show that the degree of a node is a crucial element in this selection process, and that the targeting mechanism is most effective in heterogeneous scale-free architectures. This makes the proposed approach applicable to the large majority of natural and man-made networked systems.