Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ricardo Bajo is active.

Publication


Featured researches published by Ricardo Bajo.


Brain | 2010

Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury

Nazareth P. Castellanos; Nuria Paul; Victoria E. Ordóñez; Olivier Demuynck; Ricardo Bajo; Pablo Campo; Alvaro Bilbao; Tomás Ortiz; Francisco del-Pozo; Fernando Maestú

Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on functional connectivity patterns. Networks were calculated from resting-state magnetoencephalographic recordings from 15 brain injured patients and 14 healthy controls by means of wavelet coherence in standard frequency bands. We compared the parameters defining the network, such as number and strength of interactions as well as their topology, in controls and patients for two conditions: following a traumatic brain injury and after a rehabilitation treatment. A loss of delta- and theta-based connectivity and conversely an increase in alpha- and beta-band-based connectivity were found. Furthermore, connectivity parameters approached controls in all frequency bands, especially in slow-wave bands. A correlation between network reorganization and cognitive recovery was found: the reduction of delta-band-based connections and the increment of those based on alpha band correlated with Verbal Fluency scores, as well as Perceptual Organization and Working Memory Indexes, respectively. Additionally, changes in connectivity values based on theta and beta bands correlated with the Patient Competency Rating Scale. The current study provides new evidence of the neurophysiological mechanisms underlying neuronal plasticity processes after brain injury, and suggests that these changes are related with observed changes at the behavioural level.


The Journal of Neuroscience | 2014

TMS-EEG Signatures of GABAergic Neurotransmission in the Human Cortex

Isabella Premoli; Nazareth P. Castellanos; Davide Rivolta; Paolo Belardinelli; Ricardo Bajo; C. Zipser; Svenja Espenhahn; Tonio Heidegger; Florian Müller-Dahlhaus; Ulf Ziemann

Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ∼100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at α1, α2, α3, and α5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the α1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of α1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia.


PLOS ONE | 2011

Reorganization of functional networks in mild cognitive impairment.

Javier M. Buldú; Ricardo Bajo; Fernando Maestú; Nazareth P. Castellanos; I. Leyva; Pablo Gil; I. Sendiña-Nadal; Juan A. Almendral; Angel Nevado; Francisco del-Pozo; Stefano Boccaletti

Whether the balance between integration and segregation of information in the brain is damaged in Mild Cognitive Impairment (MCI) subjects is still a matter of debate. Here we characterize the functional network architecture of MCI subjects by means of complex networks analysis. Magnetoencephalograms (MEG) time series obtained during a memory task were evaluated by synchronization likelihood (SL), to quantify the statistical dependence between MEG signals and to obtain the functional networks. Graphs from MCI subjects show an enhancement of the strength of connections, together with an increase in the outreach parameter, suggesting that memory processing in MCI subjects is associated with higher energy expenditure and a tendency toward random structure, which breaks the balance between integration and segregation. All features are reproduced by an evolutionary network model that simulates the degenerative process of a healthy functional network to that associated with MCI. Due to the high rate of conversion from MCI to Alzheimer Disease (AD), these results show that the analysis of functional networks could be an appropriate tool for the early detection of both MCI and AD.


Neuroinformatics | 2013

HERMES: Towards an Integrated Toolbox to Characterize Functional and Effective Brain Connectivity

Guiomar Niso; Ricardo Bruña; Ernesto Pereda; Ricardo Gutiérrez; Ricardo Bajo; Fernando Maestú; Francisco del-Pozo

The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ‘traditional’ set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality.This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox.Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.


NeuroImage | 2011

Principles of recovery from traumatic brain injury: Reorganization of functional networks

Nazareth P. Castellanos; I. Leyva; Javier M. Buldú; Ricardo Bajo; Nuria Paul; Pablo Cuesta; Victoria E. Ordóñez; Cristina L. Pascua; Stefano Boccaletti; Fernando Maestú; Francisco del-Pozo

Recovery after brain injury is an excellent platform to study the mechanism underlying brain plasticity, the reorganization of networks. Do complex network measures capture the physiological and cognitive alterations that occurred after a traumatic brain injury and its recovery? Patients as well as control subjects underwent resting-state MEG recording following injury and after neurorehabilitation. Next, network measures such as network strength, path length, efficiency, clustering and energetic cost were calculated. We show that these parameters restore, in many cases, to control ones after recovery, specifically in delta and alpha bands, and we design a model that gives some hints about how the functional networks modify their weights in the recovery process. Positive correlations between complex network measures and some of the general index of the WAIS-III test were found: changes in delta-based path-length and those in Performance IQ score, and alpha-based normalized global efficiency and Perceptual Organization Index. These results indicate that: 1) the principle of recovery depends on the spectral band, 2) the structure of the functional networks evolves in parallel to brain recovery with correlations with neuropsychological scales, and 3) energetic cost reveals an optimal principle of recovery.


Journal of Alzheimer's Disease | 2010

Functional Connectivity in Mild Cognitive Impairment During a Memory Task: Implications for the Disconnection Hypothesis

Ricardo Bajo; Fernando Maestú; Angel Nevado; Miguel Sancho; Ricardo Gutiérrez; Pablo Campo; Nazareth P. Castellanos; Pedro Gil; Stephan Moratti; Ernesto Pereda; Francisco del-Pozo

Mild cognitive impairment (MCI) has been considered an intermediate state between healthy aging and dementia. The early damage in anatomical connectivity and progressive loss of synapses that characterize early Alzheimers disease suggest that MCI could also be a disconnection syndrome. Here, we compare the degree of synchronization of brain signals recorded with magnetoencephalography from patients (22) with MCI with that of healthy controls (19) during a memory task. Synchronization Likelihood, an index based on the theory of nonlinear dynamical systems, was used to measure functional connectivity. During the memory task patients showed higher interhemispheric synchronization than healthy controls between left and right -anterior temporo-frontal regions (in all studied frequency bands) and in posterior regions in the γ band. On the other hand, the connectivity pattern from healthy controls indicated two clusters of higher synchronization, one among left temporal sensors and another one among central channels. Both of them were found in all frequency bands. In the γ band, controls showed higher Synchronization Likelihood values than MCI patients between central-posterior and frontal-posterior channels and a high synchronization in posterior regions. The inter-hemispheric increased synchronization values could reflect a compensatory mechanism for the lack of efficiency of the memory networks in MCI patients. Therefore, these connectivity profiles support only partially the idea of MCI as a disconnection syndrome, as patients showed increased long distance inter-hemispheric connections but a decrease in antero-posterior functional connectivity.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Dynamics of brain networks in the aesthetic appreciation

Camilo J. Cela-Conde; Juan García-Prieto; José J. Ramasco; Claudio R. Mirasso; Ricardo Bajo; Enric Munar; Albert Flexas

Neuroimage experiments have been essential for identifying active brain networks. During cognitive tasks as in, e.g., aesthetic appreciation, such networks include regions that belong to the default mode network (DMN). Theoretically, DMN activity should be interrupted during cognitive tasks demanding attention, as is the case for aesthetic appreciation. Analyzing the functional connectivity dynamics along three temporal windows and two conditions, beautiful and not beautiful stimuli, here we report experimental support for the hypothesis that aesthetic appreciation relies on the activation of two different networks, an initial aesthetic network and a delayed aesthetic network, engaged within distinct time frames. Activation of the DMN might correspond mainly to the delayed aesthetic network. We discuss adaptive and evolutionary explanations for the relationships existing between the DMN and aesthetic networks and offer unique inputs to debates on the mind/brain interaction.


Scientific Reports | 2012

Optimizing Functional Network Representation of Multivariate Time Series

Massimiliano Zanin; Pedro Sousa; David Papo; Ricardo Bajo; Juan Garcia-Prieto; Francisco del Pozo; Ernestina Menasalvas; Stefano Boccaletti

By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the networks indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.


The Journal of Neuroscience | 2014

Alpha-band hypersynchronization in progressive mild cognitive impairment. A magnetoencephalography study

María Eugenia López; Ricardo Bruña; Sara Aurtenetxe; José Ángel Pineda-Pardo; Alberto Marcos; Juan Arrazola; Ana Isabel Reinoso; Pedro Montejo; Ricardo Bajo; Fernando Maestú

People with mild cognitive impairment (MCI) show a high risk to develop Alzheimers disease (AD; Petersen et al., 2001). Nonetheless, there is a lack of studies about how functional connectivity patterns may distinguish between progressive (pMCI) and stable (sMCI) MCI patients. To examine whether there were differences in functional connectivity between groups, MEG eyes-closed recordings from 30 sMCI and 19 pMCI subjects were compared. The average conversion time of pMCI was 1 year, so they were considered as fast converters. To this end, functional connectivity in different frequency bands was assessed with phase locking value in source space. Then the significant differences between both groups were correlated with neuropsychological scores and entorhinal, parahippocampal, and hippocampal volumes. Both groups did not differ in age, gender, or educational level. pMCI patients obtained lower scores in episodic and semantic memory and also in executive functioning. At the structural level, there were no differences in hippocampal volume, although some were found in left entorhinal volume between both groups. Additionally, pMCI patients exhibit a higher synchronization in the alpha band between the right anterior cingulate and temporo-occipital regions than sMCI subjects. This hypersynchronization was inversely correlated with cognitive performance, both hippocampal volumes, and left entorhinal volume. The increase in phase synchronization between the right anterior cingulate and temporo-occipital areas may be predictive of conversion from MCI to AD.


International Journal of Alzheimer's Disease | 2011

Magnetoencephalography as a putative biomarker for Alzheimer's disease

Edward Zamrini; Fernando Maestú; Eero Pekkonen; Michael Funke; J. M. Mäkelä; Myles Riley; Ricardo Bajo; Gustavo Sudre; Alberto Fernández; Nazareth P. Castellanos; Francisco del Pozo; Cornelis J. Stam; Bob W. van Dijk; Anto Bagic; James T. Becker

Alzheimers Disease (AD) is the most common dementia in the elderly and is estimated to affect tens of millions of people worldwide. AD is believed to have a prodromal stage lasting ten or more years. While amyloid deposits, tau filaments, and loss of brain cells are characteristics of the disease, the loss of dendritic spines and of synapses predate such changes. Popular preclinical detection strategies mainly involve cerebrospinal fluid biomarkers, magnetic resonance imaging, metabolic PET scans, and amyloid imaging. One strategy missing from this list involves neurophysiological measures, which might be more sensitive to detect alterations in brain function. The Magnetoencephalography International Consortium of Alzheimers Disease arose out of the need to advance the use of Magnetoencephalography (MEG), as a tool in AD and pre-AD research. This paper presents a framework for using MEG in dementia research, and for short-term research priorities.

Collaboration


Dive into the Ricardo Bajo's collaboration.

Top Co-Authors

Avatar

Fernando Maestú

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Pablo Cuesta

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Nazareth P. Castellanos

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

María Eugenia López

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Francisco del-Pozo

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Sara Aurtenetxe

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pilar Garcés

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Alberto Fernández

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Francisco del Pozo

Technical University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge