Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. Booth is active.

Publication


Featured researches published by David R. Booth.


Nature Genetics | 2009

IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy

Vijayaprakash Suppiah; Max Moldovan; Golo Ahlenstiel; Thomas Berg; Martin Weltman; Maria Lorena Abate; Margaret F. Bassendine; Ulrich Spengler; Gregory J. Dore; Elizabeth E. Powell; Stephen M. Riordan; David Sheridan; Antonina Smedile; Vincenzo Fragomeli; Tobias Müller; Melanie Bahlo; Graeme J. Stewart; David R. Booth; Jacob George

Hepatitis C virus (HCV) infects 3% of the worlds population. Treatment of chronic HCV consists of a combination of PEGylated interferon-α (PEG-IFN-α) and ribavirin (RBV). To identify genetic variants associated with HCV treatment response, we conducted a genome-wide association study of sustained virological response (SVR) to PEG-IFN-α/RBV combination therapy in 293 Australian individuals with genotype 1 chronic hepatitis C, with validation in an independent replication cohort consisting of 555 individuals. We report an association to SVR within the gene region encoding interleukin 28B (IL28B, also called IFNλ3; rs8099917 combined P = 9.25 × 10−9, OR = 1.98, 95% CI = 1.57–2.52). IL28B contributes to viral resistance and is known to be upregulated by interferons and by RNA virus infection. These data suggest that host genetics may be useful for the prediction of drug response, and they also support the investigation of the role of IL28B in the treatment of HCV and in other diseases treated with IFN-α.


American Journal of Human Genetics | 2005

A high-density screen for linkage in multiple sclerosis.

Stephen Sawcer; Maria Ban; Mel Maranian; Tai Wai Yeo; Alastair Compston; Andrew Kirby; Mark J. Daly; De Jager Pl; Emily Walsh; Eric S. Lander; John D. Rioux; David A. Hafler; Adrian J. Ivinson; Jacqueline Rimmler; Simon G. Gregory; Silke Schmidt; Margaret A. Pericak-Vance; Eva Åkesson; Jan Hillert; Pameli Datta; Annette Bang Oturai; Lars P. Ryder; Hanne F. Harbo; Anne Spurkland; Kjell-Morten Myhr; Mikko Laaksonen; David R. Booth; Robert Heard; Graeme J. Stewart; Robin Lincoln

To provide a definitive linkage map for multiple sclerosis, we have genotyped the Illumina BeadArray linkage mapping panel (version 4) in a data set of 730 multiplex families of Northern European descent. After the application of stringent quality thresholds, data from 4,506 markers in 2,692 individuals were included in the analysis. Multipoint nonparametric linkage analysis revealed highly significant linkage in the major histocompatibility complex (MHC) on chromosome 6p21 (maximum LOD score [MLS] 11.66) and suggestive linkage on chromosomes 17q23 (MLS 2.45) and 5q33 (MLS 2.18). This set of markers achieved a mean information extraction of 79.3% across the genome, with a Mendelian inconsistency rate of only 0.002%. Stratification based on carriage of the multiple sclerosis-associated DRB1*1501 allele failed to identify any other region of linkage with genomewide significance. However, ordered-subset analysis suggested that there may be an additional locus on chromosome 19p13 that acts independent of the main MHC locus. These data illustrate the substantial increase in power that can be achieved with use of the latest tools emerging from the Human Genome Project and indicate that future attempts to systematically identify susceptibility genes for multiple sclerosis will have to involve large sample sizes and an association-based methodology.


Annals of Neurology | 2011

Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci

Nikolaos A. Patsopoulos; Federica Esposito; Joachim Reischl; Stephan Lehr; David Bauer; Jürgen Heubach; Rupert Sandbrink; Christoph Pohl; Gilles Edan; Ludwig Kappos; David Miller; Javier Montalbán; Chris H. Polman; Mark Freedman; Hans-Peter Hartung; Barry G. W. Arnason; Giancarlo Comi; Stuart D. Cook; Massimo Filippi; Douglas S. Goodin; Paul O'Connor; George C. Ebers; Dawn Langdon; Anthony T. Reder; Anthony Traboulsee; Frauke Zipp; Sebastian Schimrigk; Jan Hillert; Melanie Bahlo; David R. Booth

To perform a 1‐stage meta‐analysis of genome‐wide association studies (GWAS) of multiple sclerosis (MS) susceptibility and to explore functional consequences of new susceptibility loci.


PLOS Medicine | 2011

IL28B, HLA-C, and KIR variants additively predict response to therapy in chronic hepatitis C virus infection in a European Cohort: a cross-sectional study.

Vijayaprakash Suppiah; Silvana Gaudieri; Nicola J. Armstrong; Kate S. O'Connor; Thomas Berg; Martin Weltman; Maria Lorena Abate; Ulrich Spengler; Margaret F. Bassendine; Gregory J. Dore; William L. Irving; Elizabeth E. Powell; Margaret Hellard; Stephen M. Riordan; Gail V. Matthews; David Sheridan; Jacob Nattermann; Antonina Smedile; Tobias Müller; E. Hammond; David S. Dunn; Francesco Negro; Pierre-Yves Bochud; S. Mallal; Golo Ahlenstiel; Graeme J. Stewart; Jacob George; David R. Booth

Vijayaprakash Suppiah and colleagues show that genotyping hepatitis C patients for the IL28B, HLA-C, and KIR genes improves the ability to predict whether or not patients will respond to antiviral treatment.


Hepatology | 2010

Potential Role for Interleukin-28B Genotype in Treatment Decision-Making in Recent Hepatitis C Virus Infection

Jason Grebely; Kathy Petoumenos; Margaret Hellard; Gail V. Matthews; Vijayaprakash Suppiah; Tanya L. Applegate; Barbara Yeung; Phillipa S. Marks; William D. Rawlinson; Andrew Lloyd; David R. Booth; John M. Kaldor; Jacob George; Gregory J. Dore

Polymorphisms in the IL28B (interleukin‐28B) gene region are important in predicting outcome following therapy for chronic hepatitis C virus (HCV) infection. We evaluated the role of IL28B in spontaneous and treatment‐induced clearance following recent HCV infection. The Australian Trial in Acute Hepatitis C (ATAHC) was a study of the natural history and treatment of recent HCV, as defined by positive anti‐HCV antibody, preceded by either acute clinical HCV infection within the prior 12 months or seroconversion within the prior 24 months. Factors associated with spontaneous and treatment‐induced HCV clearance, including variations in IL28B, were assessed. Among 163 participants, 132 were untreated (n = 52) or had persistent infection (infection duration ≥26 weeks) at treatment initiation (n = 80). Spontaneous clearance was observed in 23% (30 of 132 participants). In Cox proportional hazards analysis (without IL28B), HCV seroconversion illness with jaundice was the only factor predicting spontaneous clearance (adjusted hazards ratio = 2.86; 95% confidence interval = 1.24, 6.59; P = 0.014). Among participants with IL28B genotyping (n = 102 of 163 overall and 79 of 132 for the spontaneous clearance population), rs8099917 TT homozygosity (versus GT/GG) was the only factor independently predicting time to spontaneous clearance (adjusted hazard ratio = 3.78; 95% confidence interval = 1.04, 13.76; P = 0.044). Participants with seroconversion illness with jaundice were more frequently rs8099917 TT homozygotes than other (GG/GT) genotypes (32% versus 5%, P = 0.047). Among participants adherent to treatment and who had IL28B genotyping (n = 54), sustained virologic response was similar among TT homozygotes (18 of 29 participants, 62%) and those with GG/GT genotype (16 of 25, 64%, P = 0.884). Conclusion: During recent HCV infection, genetic variations in IL28B region were associated with spontaneous but not treatment‐induced clearance. Early therapeutic intervention could be recommended for individuals with unfavorable IL28B genotypes. (HEPATOLOGY 2010;)


PLOS ONE | 2010

MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood.

Mathew B. Cox; Murray J. Cairns; Kaushal S. Gandhi; Adam P. Carroll; Sophia M. Moscovis; Graeme J. Stewart; Simon Broadley; Rodney J. Scott; David R. Booth; Jeannette Lechner-Scott

It is well established that Multiple Sclerosis (MS) is an immune mediated disease. Little is known about what drives the differential control of the immune system in MS patients compared to unaffected individuals. MicroRNAs (miRNAs) are small non-coding nucleic acids that are involved in the control of gene expression. Their potential role in T cell activation and neurodegenerative disease has recently been recognised and they are therefore excellent candidates for further studies in MS. We investigated the transcriptome of currently known miRNAs using miRNA microarray analysis in peripheral blood samples of 59 treatment naïve MS patients and 37 controls. Of these 59, 18 had a primary progressive, 17 a secondary progressive and 24 a relapsing remitting disease course. In all MS subtypes miR-17 and miR-20a were significantly under-expressed in MS, confirmed by RT-PCR. We demonstrate that these miRNAs modulate T cell activation genes in a knock-in and knock-down T cell model. The same T cell activation genes are also up-regulated in MS whole blood mRNA, suggesting these miRNAs or their analogues may provide useful targets for new therapeutic approaches.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The role of the CD58 locus in multiple sclerosis

Philip L. De Jager; Clare Baecher-Allan; Lisa M. Maier; Ariel T. Arthur; Linda Ottoboni; Lisa F. Barcellos; Jacob L. McCauley; Stephen Sawcer; An Goris; Janna Saarela; Roman Yelensky; Alkes L. Price; Virpi Leppa; Nick Patterson; Paul I. W. de Bakker; Dong Tran; Cristin Aubin; Susan Pobywajlo; Elizabeth Rossin; Xinli Hu; Charles Ashley; Edwin Choy; John D. Rioux; Margaret A. Pericak-Vance; Adrian J. Ivinson; David R. Booth; Graeme J. Stewart; Aarno Palotie; Leena Peltonen; Bénédicte Dubois

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system associated with demyelination and axonal loss. A whole genome association scan suggested that allelic variants in the CD58 gene region, encoding the costimulatory molecule LFA-3, are associated with risk of developing MS. We now report additional genetic evidence, as well as resequencing and fine mapping of the CD58 locus in patients with MS and control subjects. These efforts identify a CD58 variant that provides further evidence of association with MS (P = 1.1 × 10−6, OR 0.82) and the single protective effect within the CD58 locus is captured by the rs2300747G allele. This protective rs2300747G allele is associated with a dose-dependent increase in CD58 mRNA expression in lymphoblastic cell lines (P = 1.1 × 10−10) and in peripheral blood mononuclear cells from MS subjects (P = 0.0037). This protective effect of enhanced CD58 expression on circulating mononuclear cells in patients with MS is supported by finding that CD58 mRNA expression is higher in MS subjects during clinical remission. Functional investigations suggest a potential mechanism whereby increases in CD58 expression, mediated by the protective allele, up-regulate the expression of transcription factor FoxP3 through engagement of the CD58 receptor, CD2, leading to the enhanced function of CD4+CD25high regulatory T cells that are defective in subjects with MS.


Hepatology | 2011

Hepatitis C pharmacogenetics: State of the art in 2010

Nezam H. Afdhal; John G. McHutchison; Stefan Zeuzem; Alessandra Mangia; Jean-Michel Pawlotsky; Jeffrey S. Murray; Yasuhito Tanaka; David L. Thomas; David R. Booth; David B. Goldstein

In 2009, a correlated set of polymorphisms in the region of the interleukin‐28B (IL28B) gene were associated with clearance of genotype 1 hepatitis C virus (HCV) in patients treated with pegylated interferon‐alfa and ribavirin. The same polymorphisms were subsequently associated with spontaneous clearance of HCV in untreated patients. The link between IL28B genotype and HCV clearance may impact decisions regarding initiation of current therapy, the design and interpretation of clinical studies, the economics of treatment, and the process of regulatory approval for new anti‐HCV therapeutic agents. (Hepatology 2011)


Genes and Immunity | 2009

The expanding genetic overlap between multiple sclerosis and type I diabetes

David R. Booth; Robert Heard; Graeme J. Stewart; An Goris; Rita Dobosi; Bénédicte Dubois; Åslaug R. Lorentzen; Elisabeth G. Celius; Hanne F. Harbo; Anne Spurkland; Tomas Olsson; Ingrid Kockum; Jenny Link; Jan Hillert; Maria Ban; Amie Baker; Stephen Sawcer; Alastair Compston; Tania Mihalova; Richard C. Strange; Clive Hawkins; Gillian Ingram; Neil Robertson; Philip L. De Jager; David A. Hafler; Lisa F. Barcellos; Adrian J. Ivinson; Margaret A. Pericak-Vance; Jorge R. Oksenberg; Stephen L. Hauser

Familial clustering of autoimmune disease is well recognized and raises the possibility that some susceptibility genes may predispose to autoimmunity in general. In light of this observation, it might be expected that some of the variants of established relevance in one autoimmune disease may also be relevant in other related conditions. On the basis of this hypothesis, we tested seven single nucleotide polymorphisms (SNPs) that are known to be associated with type I diabetes in a large multiple sclerosis data set consisting of 2369 trio families, 5737 cases and 10 296 unrelated controls. Two of these seven SNPs showed evidence of association with multiple sclerosis; that is rs12708716 from the CLEC16A gene (P=1.6 × 10−16) and rs763361 from the CD226 gene (P=5.4 × 10−8). These findings thereby identify two additional multiple sclerosis susceptibility genes and lend support to the notion of autoimmune susceptibility genes.


American Journal of Human Genetics | 2013

Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls

Sergio E. Baranzini; Pouya Khankhanian; Nikolaos A. Patsopoulos; Michael Li; Jim Stankovich; Chris Cotsapas; Helle Bach Søndergaard; Maria Ban; Nadia Barizzone; Laura Bergamaschi; David R. Booth; Dorothea Buck; Paola Cavalla; Elisabeth G. Celius; Manuel Comabella; Giancarlo Comi; Alastair Compston; Isabelle Cournu-Rebeix; Sandra D’Alfonso; Vincent Damotte; Lennox Din; Bénédicte Dubois; Irina Elovaara; Federica Esposito; Bertrand Fontaine; Andre Franke; An Goris; Pierre-Antoine Gourraud; Christiane Graetz; Franca Rosa Guerini

Multiple sclerosis (MS) is an inflammatory CNS disease with a substantial genetic component, originally mapped to only the human leukocyte antigen (HLA) region. In the last 5 years, a total of seven genome-wide association studies and one meta-analysis successfully identified 57 non-HLA susceptibility loci. Here, we merged nominal statistical evidence of association and physical evidence of interaction to conduct a protein-interaction-network-based pathway analysis (PINBPA) on two large genetic MS studies comprising a total of 15,317 cases and 29,529 controls. The distribution of nominally significant loci at the gene level matched the patterns of extended linkage disequilibrium in regions of interest. We found that products of genome-wide significantly associated genes are more likely to interact physically and belong to the same or related pathways. We next searched for subnetworks (modules) of genes (and their encoded proteins) enriched with nominally associated loci within each study and identified those modules in common between the two studies. We demonstrate that these modules are more likely to contain genes with bona fide susceptibility variants and, in addition, identify several high-confidence candidates (including BCL10, CD48, REL, TRAF3, and TEC). PINBPA is a powerful approach to gaining further insights into the biology of associated genes and to prioritizing candidates for subsequent genetic studies of complex traits.

Collaboration


Dive into the David R. Booth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bénédicte Dubois

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

An Goris

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge