Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grant P. Parnell is active.

Publication


Featured researches published by Grant P. Parnell.


Critical Care | 2012

A distinct influenza infection signature in the blood transcriptome of patients with severe community-acquired pneumonia

Grant P. Parnell; Anthony S. McLean; David R. Booth; Nicola J. Armstrong; Marek Nalos; Stephen J. Huang; Jan Manak; Wilson Tang; Oi-Yan Tam; Stanley Chan; Benjamin Tang

IntroductionDiagnosis of severe influenza pneumonia remains challenging because of a lack of correlation between the presence of influenza virus and clinical status. We conducted gene-expression profiling in the whole blood of critically ill patients to identify a gene signature that would allow clinicians to distinguish influenza infection from other causes of severe respiratory failure, such as bacterial pneumonia, and noninfective systemic inflammatory response syndrome.MethodsWhole-blood samples were collected from critically ill individuals and assayed on Illumina HT-12 gene-expression beadarrays. Differentially expressed genes were determined by linear mixed-model analysis and overrepresented biological pathways determined by using GeneGo MetaCore.ResultsThe gene-expression profile of H1N1 influenza A pneumonia was distinctly different from those of bacterial pneumonia and systemic inflammatory response syndrome. The influenza gene-expression profile is characterized by upregulation of genes from cell-cycle regulation, apoptosis, and DNA-damage-response pathways. In contrast, no distinctive gene-expression signature was found in patients with bacterial pneumonia or systemic inflammatory response syndrome. The gene-expression profile of influenza infection persisted through 5 days of follow-up. Furthermore, in patients with primary H1N1 influenza A infection in whom bacterial co-infection subsequently developed, the influenza gene-expression signature remained unaltered, despite the presence of a superimposed bacterial infection.ConclusionsThe whole-blood expression-profiling data indicate that the host response to influenza pneumonia is distinctly different from that caused by bacterial pathogens. This information may speed the identification of the cause of infection in patients presenting with severe respiratory failure, allowing appropriate patient care to be undertaken more rapidly.


PLOS ONE | 2011

Aberrant cell cycle and apoptotic changes characterise severe influenza A infection--a meta-analysis of genomic signatures in circulating leukocytes.

Grant P. Parnell; Anthony S. McLean; David R. Booth; Stephen J. Huang; Marek Nalos; Benjamin Tang

Influenza A infection is a global disease that has been responsible for four pandemics over the last one hundred years. However, it remains poorly understood as to why some infected individuals succumb to life threatening complications whilst others recover and are relatively unaffected. Using gene-expression analysis of circulating leukocytes, here we show that the progression towards severe influenza A infection is characterised by an abnormal transcriptional reprogramming of cell cycle and apoptosis pathways. In severely infected humans, leukocyte gene-expression profiles display opposing cell cycle activities; an increased aberrant DNA replication in the G1/S phase yet delayed progression in the G2/M phase. In mild infection, cell cycle perturbations are fewer and are integrated with an efficient apoptotic program. Importantly, the loss of integration between cell cycle perturbations and apoptosis marks the transition from a mild viral illness to a severe, life threatening infection. Our findings suggest that circulating immune cells may play a significant role in the evolution of the host response. Further study may reveal alternative host response factors previously unrecognized in the current disease model of influenza.


Shock | 2013

Identifying key regulatory genes in the whole blood of septic patients to monitor underlying immune dysfunctions

Grant P. Parnell; Benjamin Tang; Marek Nalos; Nicola J. Armstrong; Stephen J. Huang; David R. Booth; Anthony S. McLean

ABSTRACT There is currently no reliable tool available to measure immune dysfunction in septic patients in the clinical setting. This proof-of-concept study assesses the potential of gene expression profiling of whole blood as a tool to monitor immune dysfunction in critically ill septic patients. Whole-blood samples were collected daily for up to 5 days from patients admitted to the intensive care unit with sepsis. RNA isolated from whole-blood samples was assayed on Illumina HT-12 gene expression microarrays consisting of 48,804 probes. Microarray analysis identified 3,677 genes as differentially expressed across 5 days between septic patients and healthy controls. Of the 3,677 genes, biological pathway analysis identified 86 genes significantly downregulated in the sepsis patients were present in pathways relating to immune response. These 86 genes correspond to known immune pathways implicated in sepsis, including lymphocyte depletion, reduced T-lymphocyte activation, and deficient antigen presentation. Furthermore, expression levels of these genes correlated with clinical severity, with a significantly greater degree of downregulation found in nonsurvivors compared with survivors. The results show that whole-blood gene expression analysis can capture systemic immune dysfunctions in septic patients. Our study provides an experimental basis to support further study on the use of a gene expression–based assay, to assess immunosuppression, and to guide immunotherapy in future clinical trials.


Journal of Immunology | 2013

Fetal–Maternal Alignment of Regulatory T Cells Correlates with IL-10 and Bcl-2 Upregulation in Pregnancy

Brigitte Santner-Nanan; Kathrin Straubinger; Peter Hsu; Grant P. Parnell; Ben Tang; Bei Xu; Angela Makris; Annemarie Hennessy; Michael J. Peek; Dirk H. Busch; Clarissa Prazeres da Costa; Ralph Nanan

Transplacental immune regulation refers to the concept that during pregnancy, significant cross-talk occurs between the maternal and fetal immune system with potential long-term effects for both the mother and child. In this study, we made the surprising observation that there is a strong correlation of peripheral blood regulatory T (Treg) cells between the mother and the fetus. In contrast, there is no significant Treg cell correlation between paternal fetal dyads (pairs), suggesting that the specific context of pregnancy, rather than the genetic parental similarity to the fetus, is responsible for this correlation. Gene microarray analysis of Treg cells identified a typical IL-10–dependent signature in maternal and fetal Treg cells. In addition, a direct correlation of serum IL-10 protein levels between maternal fetal dyads was observed. Furthermore, we show that maternal serum IL-10 levels correlate with serum estradiol and estriol, implicating hormonal involvement in this alignment. Interestingly, we show that Treg cells possess higher expression of IL-10 receptor α and that Treg cell IL-10 receptor α expression directly correlates with their Bcl-2 expression. Indeed, in vitro data in both humans and mice demonstrate that IL-10 upregulates Bcl-2 specifically in Treg cells but not non-Treg cells. Our results provide evidence for transplacental regulation of cellular immunity and suggest that IL-10 may influence Treg cell homeostasis through its effect on Treg cell Bcl-2 expression. These novel findings have important implications on immune tolerance in pregnancy and beyond in areas of autoimmunity, allergy, and transplantation.


Human Molecular Genetics | 2014

The CYP27B1 variant associated with an increased risk of autoimmune disease is underexpressed in tolerizing dendritic cells

Fernando Shahijanian; Grant P. Parnell; Fiona C. McKay; Prudence N. Gatt; Maryam Shojoei; Kate S. O'Connor; Stephen D. Schibeci; Fabienne Brilot; Christopher Liddle; Marcel Batten; Graeme J. Stewart; David R. Booth

Genome-wide association studies have identified a linkage disequilibrium (LD) block on chromosome 12 associated with multiple sclerosis (MS), type 1 diabetes and other autoimmune diseases. This block contains CYP27B1, which catalyzes the conversion of 25 vitamin D3 (VitD3) to 1,25VitD3. Fine-mapping analysis has failed to identify which of the 17 genes in this block is most associated with MS. We have previously used a functional approach to identify the causal gene. We showed that the expression of several genes in this block in whole blood is highly associated with the MS risk allele, but not CYP27B1. Here, we show that CYP27B1 is predominantly expressed in dendritic cells (DCs). Its expression in these cells is necessary for their response to VitD, which is known to upregulate pathways involved in generating a tolerogenic DC phenotype. Here, we utilize a differentiation protocol to generate inflammatory (DC1) and tolerogenic (DC2) DCs, and show that for the MS risk allele CYP27B1 is underexpressed in DCs, especially DC2s. Of the other Chr12 LD block genes expressed in these cells, only METT21B expression was as affected by the genotype. Another gene associated with autoimmune diseases, CYP24A1, catabolizes 1,25 VitD3, and is predominantly expressed in DCs, but equally between DC1s and DC2s. Overall, these data are consistent with the hypothesis that reduced VitD pathway gene upregulation in DC2s of carriers of the risk haplotype of CYP27B1 contributes to autoimmune diseases. These data support therapeutic approaches aimed at targeting VitD effects on DCs.


PLOS ONE | 2015

The MS risk allele of CD40 is associated with reduced cell-membrane bound expression in antigen presenting cells: Implications for gene function

Judith Field; Fernando Shahijanian; Stephen D. Schibeci; Australia; Laura Johnson; Melissa Gresle; Louise Laverick; Grant P. Parnell; Graeme J. Stewart; Fiona C. McKay; Trevor J. Kilpatrick; Helmut Butzkueven; David J. Booth

Human genetic and animal studies have implicated the costimulatory molecule CD40 in the development of multiple sclerosis (MS). We investigated the cell specific gene and protein expression variation controlled by the CD40 genetic variant(s) associated with MS, i.e. the T-allele at rs1883832. Previously we had shown that the risk allele is expressed at a lower level in whole blood, especially in people with MS. Here, we have defined the immune cell subsets responsible for genotype and disease effects on CD40 expression at the mRNA and protein level. In cell subsets in which CD40 is most highly expressed, B lymphocytes and dendritic cells, the MS-associated risk variant is associated with reduced CD40 cell-surface protein expression. In monocytes and dendritic cells, the risk allele additionally reduces the ratio of expression of full-length versus truncated CD40 mRNA, the latter encoding secreted CD40. We additionally show that MS patients, regardless of genotype, express significantly lower levels of CD40 cell-surface protein compared to unaffected controls in B lymphocytes. Thus, both genotype-dependent and independent down-regulation of cell-surface CD40 is a feature of MS. Lower expression of a co-stimulator of T cell activation, CD40, is therefore associated with increased MS risk despite the same CD40 variant being associated with reduced risk of other inflammatory autoimmune diseases. Our results highlight the complexity and likely individuality of autoimmune pathogenesis, and could be consistent with antiviral and/or immunoregulatory functions of CD40 playing an important role in protection from MS.


Clinical Immunology | 2014

The autoimmune disease-associated transcription factors EOMES and TBX21 are dysregulated in multiple sclerosis and define a molecular subtype of disease.

Grant P. Parnell; Prudence N. Gatt; Malgorzata Krupa; Dorothee Nickles; Fiona C. McKay; Stephen D. Schibeci; Marcel Batten; Sergio E. Baranzini; Andrew Henderson; Michael Barnett; Mark Slee; Steve Vucic; Graeme J. Stewart; David R. Booth

We have identified a marked over-representation of transcription factors controlling differentiation of T, B, myeloid and NK cells among the 110 MS genes now known to be associated with multiple sclerosis (MS). To test if the expression of these genes might define molecular subtypes of MS, we interrogated their expression in blood in three independent cohorts of untreated MS (from Sydney and Adelaide) or clinically isolated syndrome (CIS, from San Francisco) patients. Expression of the transcription factors (TF) controlling T and NK cell differentiation, EOMES, TBX21 and other TFs was significantly lower in MS/CIS compared to healthy controls in all three cohorts. Expression was tightly correlated between these TFs, with other T/NK cell TFs, and to another downregulated gene, CCL5. Expression was stable over time, but did not predict disease phenotype. Optimal response to therapy might be indicated by normalization of expression of these genes in blood.


Genes and Immunity | 2016

Cistromic and genetic evidence that the vitamin D receptor mediates susceptibility to latitude-dependent autoimmune diseases

David R. Booth; Ning Ding; Grant P. Parnell; Fernando Shahijanian; Sally Coulter; Stephen D. Schibeci; Annette R. Atkins; Graeme J. Stewart; Ronald M. Evans; Michael Downes; Christopher Liddle

The vitamin D receptor (VDR) is a ligand-activated transcription factor that regulates gene expression in many cell types, including immune cells. It requires binding of 1,25 dihydroxy vitamin D3 (1,25D3) for activation. Many autoimmune diseases show latitude-dependent prevalence and/or association with vitamin D deficiency, and vitamin D supplementation is commonly used in their clinical management. 1,25D3 is regulated by genes associated with the risk of autoimmune diseases and predominantly expressed in myeloid cells. We determined the VDR cistrome in monocytes and monocyte-derived inflammatory (DC1) and tolerogenic dendritic cells (DC2). VDR motifs were highly overrepresented in ChIP-Seq peaks in stimulated monocyte (40%), DC1 (21%) and DC2 (47%), P<E−100 for all. Of the nearly 11 000 VDR-binding peaks identified across the genome in DC1s, 1317 were shared with DC2s (91% of DC2 sites) and 1579 with monocytes (83% of monocyte sites). Latitude-dependent autoimmune disease risk polymorphisms were highly overrepresented within 5 kb of the peaks. Several transcription factor recognition motifs were highly overrepresented in the peaks, including those for the autoimmune risk gene, BATF. This evidence indicates that VDR regulates hundreds of myeloid cell genes and that the molecular pathways controlled by VDR in these cells are important in maintaining tolerance.


Frontiers in Immunology | 2017

The Multiple Sclerosis (MS) Genetic Risk Factors Indicate both Acquired and Innate Immune Cell Subsets Contribute to MS Pathogenesis and Identify Novel Therapeutic Opportunities

Grant P. Parnell; David R. Booth

Multiple sclerosis (MS) is known to be a partially heritable autoimmune disease. The risk of developing MS increases from typically 1 in 1,000 in the normal population to 1 in 4 or so for identical twins where one twin is affected. Much of this heritability is now explained and is due almost entirely to genes affecting the immune response. The largest and first identified genetic risk factor is an allele from the MHC class II HLA-DRB1 gene, HLA-DRB1*15:01, which increases risk about threefold. The HLA-DRB1 gene is expressed in antigen-presenting cells, and its protein functions in presenting particular types of antigen to CD4 T cells. This discovery supported the development of the first successful immunomodulatory therapies: glatiramer acetate, which mimics the antigen presentation process, and interferon beta, which targets CD4 T cell activation. Over 200 genetic risk variants, all single nucleotide polymorphisms (SNPs), have now been described. The SNPs are located within, or close to, genes expressed predominantly in acquired and innate immune cell subsets, indicating that both contribute to MS pathogenesis. The risk alleles indicate variation in the regulation of gene expression, rather than protein variation, underpins genetic susceptibility. In this review, we discuss how the expression and function of the risk genes, as well as the effect on these of the risk SNPs, indicate specific acquired immune cell processes that are the target of current successful therapies, and also point to novel therapeutic approaches.


Multiple Sclerosis Journal | 2014

Ribosomal protein S6 mRNA is a biomarker upregulated in multiple sclerosis, downregulated by interferon treatment, and affected by season

Grant P. Parnell; Prudence N. Gatt; Fiona C. McKay; Stephen D. Schibeci; Malgorzata Krupa; Joseph E. Powell; Peter M. Visscher; Grant W. Montgomery; Jeannette Lechner-Scott; Simon Broadley; Christopher Liddle; Mark Slee; Steve Vucic; Graeme J. Stewart; David R. Booth

Background: Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system which responds to therapies targeting circulating immune cells. Objective: Our aim was to test if the T-cell activation gene expression pattern (TCAGE) we had previously described from whole blood was replicated in an independent cohort. Methods: We used RNA-seq to interrogate the whole blood transcriptomes of 72 individuals (40 healthy controls, 32 untreated MS). A cohort of 862 control individuals from the Brisbane Systems Genetics Study (BSGS) was used to assess heritability and seasonal expression. The effect of interferon beta (IFNB) therapy on expression was evaluated. Results: The MS/TCAGE association was replicated and rationalized to a single marker, ribosomal protein S6 (RPS6). Expression of RPS6 was higher in MS than controls (p<0.0004), and lower in winter than summer (p<4.6E-06). The seasonal pattern correlated with monthly UV light index (R=0.82, p<0.002), and was also identified in the BSGS cohort (p<0.0016). Variation in expression of RPS6 was not strongly heritable. RPS6 expression was reduced by IFNB therapy. Conclusions: These data support investigation of RPS6 as a potential therapeutic target and candidate biomarker for measuring clinical response to IFNB and other MS therapies, and of MS disease heterogeneity.

Collaboration


Dive into the Grant P. Parnell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan G. Kermode

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge