Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. Friedlander is active.

Publication


Featured researches published by David R. Friedlander.


Experimental Neurology | 1999

In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis.

David Zagzag; Andrea Hooper; David R. Friedlander; Wai Chan; Jocelyn Holash; Stanley J. Wiegand; George D. Yancopoulos; Martin Grumet

Angiopoietin-1 (Ang-1) and its naturally occurring antagonist angiopoietin-2 (Ang-2) are novel ligands that regulate tyrosine phosphorylation of the Tie2/Tek receptor on endothelial cells. Proper regulation of Tie2/Tek is absolutely required for normal vascular development, seemingly by regulating vascular remodeling and endothelial cell interactions with supporting pericytes/smooth muscle cells. We investigated the expression of Ang-1 and Ang-2 in human astrocytomas by in situ hybridization and compared them to the distribution of pericytes/smooth muscle cells by immunohistochemistry for alpha-smooth muscle actin (SMA). Ang-1 mRNA was localized in tumor cells and Ang-2 mRNA was detected in endothelial cells of hyperplastic and nonhyperplastic tumor vessels. Ang-2 was also expressed in partially sclerotic vessels and in vascular channels surrounded by tumor cells in brain adjacent to the tumor. Neither Ang-1 nor Ang-2 was detected in normal brain. Dynamic changes in SMA expression during glioma tumorigenesis appear to progress from fragmentation in early vascular hyperplasia to subsequent reassociation and enhanced expression in later stages of vascular proliferation in hyperplastic complexes in high-grade gliomas. All these vessels displaying dynamic changes in SMA immunoreactivity also expressed Ang-2 mRNA. Moreover, SMA immunoreactive intratumoral vascular channels lacking morphological evidence of hyperplasia also showed upregulation of Ang-2. These results suggest that angiopoietins are involved in the early stage of vascular activation and in advanced angiogenesis, and they identify Ang-2 as an early marker of glioma-induced neovascularization. The association between Ang-2 expression and alterations in SMA immunoreactivity suggests a role for Ang-2 in tumor-associated activation of pericytes/smooth muscle cells.


Journal of Cellular Physiology | 2003

Geldanamycin inhibits migration of glioma cells in vitro: A potential role for hypoxia-inducible factor (HIF-1α) in glioma cell invasion

David Zagzag; Motohiro Nomura; David R. Friedlander; Cy Blanco; Jean-Pierre Gagner; Naoko Nomura; Elizabeth W. Newcomb

Focal adhesion kinase (FAK) and hypoxia‐inducible factor (HIF‐1α) are both up‐regulated in glioblastoma multiforme (GBMs), particularly in invasive zones. Because FAK may play an important role in the invasion of glioma cells into the surrounding brain, we sought an agent that causes down‐regulation of FAK phosphorylation as a potential inhibitor of brain tumor invasion and growth. Geldanamycin (GA), a benzoquinone ansamycin antibiotic, binds to heat shock protein 90 (Hsp90) and interferes with its function. GA inhibits the proliferation of various non‐glial cells and has anti‐tumor activity. Moreover, GA blocks HIF‐regulated transcription of VEGF and inhibits the VEGF‐induced phosphorylation of FAK and migration of endothelial cells. Here, we tested the effect of GA on glioma cell migration in vitro and its potential to down‐regulate HIF‐1α induction. Our results demonstrate that GA (i) decreases U87MG, LN229, and U251MG glioma cell migration; (ii) reduces cell migration independent of p53 and PTEN status; (iii) prevents migration at non‐toxic concentrations; (iv) reduces phosphorylation of FAK; and (v) inhibits cobalt chloride (CoCl2)‐mediated induction of HIF‐1α in glioma cells. To the best of our knowledge, this is the first report showing that GA can inhibit phosphorylation of FAK concomitant with a decrease in cellular migration. One of the most clinically relevant aspects of this study is that GA interferes with the induction of HIF‐1α that has been linked with glioma cell migration and angiogenesis. Given the fact that GA is a small lipophilic molecule capable of penetrating the blood brain barrier together with the data presented here provide a strong rationale for its use or its analogues in the treatment of highly invasive GBMs. J. Cell. Physiol. 196: 394–402, 2003.


Pediatric Neurosurgery | 2000

Molecular events implicated in brain tumor angiogenesis and invasion

David Zagzag; David R. Friedlander; Ben Margolis; Martin Grumet; Gregg L. Semenza; Hua Zhong; Jonathan W. Simons; Jocelyn Holash; Stanley J. Wiegand; George D. Yancopoulos

We have conducted studies designed to help elucidate the molecular mechanisms involved in brain tumor invasion and angiogenesis, which are critical in the growth of malignant tumors of the central nervous system. A variety of molecular factors have been implicated in these processes. Here we focus on three that are of particular importance in the progression of brain tumors. Angiopoietins are involved in the regulation of vascular development. Hypoxia inducible factor-1 is a transcription factor that up-regulates genes, including genes encoding vascular endothelial growth factor under hypoxic conditions. Focal adhesion kinase is associated with infiltration of tumor cells and angiogenesis.


Journal of Neuro-oncology | 1999

Thalidomide and a thalidomide analogue inhibit endothelial cell proliferation in vitro

Andre L. Moreira; David R. Friedlander; Bronya Shif; Gilla Kaplan; David Zagzag

Angiogenesis is a crucial process in inflammatory reactions as well as in tumor implantation and growth. Tumors with high rates of invasion and recurrence such as gliomas, are specially dependent on neovascularization. This suggests that inhibition of angiogenesis might reduce the growth of these tumors. Thalidomide has been previously shown to inhibit angiogenesis induced by basic fibroblast growth factor in vivo, using the rabbit corneal micropocket assay. Therefore, the effect of thalidomide and a thalidomide analogue (cc-1069) on the proliferation in vitro of endothelial and glioma cells was tested. We observed a decrease in endothelial cell proliferation in cultures treated with thalidomide or the thalidomide analogue cc-1069. The analogue inhibited endothelial cell proliferation more efficiently than thalidomide. The inhibition occurred in association with a marked decrease in the activity of the nuclear factor SP1 and a moderate inhibition of NF-κB activation in nuclear extracts of endothelial cells. The drugs did not impair cell viability. There was no effect of thalidomide or the thalidomide analogue on the proliferation of the glioma cell line (U251) in vitro.


Journal of Neurotrauma | 2003

Soluble Cell Adhesion Molecule L1-Fc Promotes Locomotor Recovery in Rats after Spinal Cord Injury

Chanland Roonprapunt; Wencheng Huang; Ray Grill; David R. Friedlander; Martin Grumet; Suzhen Chen; Melitta Schachner; Wise Young

Previous studies suggest that the cell adhesion molecule L1 promotes neurite growth by neutralizing white matter associated inhibitors of axonal growth. We made a soluble chimeric dimer by linking mouse L1 to human Fc. This L1-Fc construct (40 microg/mL) markedly facilitated neurite outgrowth, as well as neuronal adhesion to white matter on frozen sections of spinal cord. We applied L1-Fc intrathecally (200 microg/mL at 0.5 microL/h) to rat spinal cords for 2 weeks after a 25-mm weight drop contusion of the T13 spinal cord. Initial experiments indicated that L1-Fc is present in the spinal cord after 2 weeks of intrathecal infusion and significantly improved locomotor recovery by 6-12 weeks after injury. We then randomized 45 rats to intrathecal infusion of L1-Fc (L1), phosphate-buffered saline controls (PBS), and a mouse monoclonal IgM antibody (M1). By 12 weeks after injury, L1-treated rats recovered significantly (p < 0.005) better locomotor function (BBB score 10.57 +/- 0.25, n = 14) than PBS-treated rats (BBB score 9.00 +/- 0.33, n = 14) or M1-treated (BBB score 8.71 +/- 0.16, n = 14). Only two rats of 22 treated with saline recovered weight-supported ambulation. Of 20 L1-Fc-treated rats, however, 18 recovered weight-supported walking by 12 weeks. The L1-Fc-treated rats also showed more consistent hindlimb contact placing than saline controls. We injected biotinylated dextran amine (BDA) into the motor cortices of 14 rats treated with L1-Fc to label corticospinal axons, comparing these with 13 rats treated with saline. In saline-treated rats, BDA-labeled corticospinal axons often grew up to the impact edge and occasionally into the impact site. L1-treated rats showed longer corticospinal tract growth at the injury site. Three rats had BDA-labeled axons that extended beyond the impact center. One L1-Fc-treated rat showed axonal extension and synapse formation in cord distal to the injury. These results indicate that soluble L1-Fc promotes axonal growth and functional recovery after spinal cord injury. However, the limited corticospinal tract growth across the injury site cannot account for the observed locomotor recovery. Thus, L1 may be stimulating growth of other motor tracts or protecting axons and neurons. More studies are required to elucidate the mechanisms of L1-Fc-induced locomotor recovery.


Journal of Neuroscience Research | 1996

Expression of polypeptide variants of receptor-type protein tyrosine phosphatase β: The secreted form, phosphacan, increases dramatically during embryonic development and modulates glial cell behavior in vitro

Takeshi Sakurai; David R. Friedlander; Martin Grumet

Glial cells express three splicing variants of a receptor‐type protein tyrosine phosphatase called RPTPβ. Two are receptor forms that differ in a large extracellular domain. The third is a secreted proteoglycan called phosphacan that lacks the cytoplasmic phosphatase domains. We have now identified, by immunoblotting, proteins corresponding to these three forms of RPTPβ in rat C6 glioma cells and brain. The short receptor form is much more prevalent than the full‐length receptor in C6 glioma cells. Phosphacan is much more abundant than either of the receptor forms in rat brain, and its expression increases progressively during embryonic development, while the receptor forms show only moderate changes. In contrast to the long form and phosphacan that were detected as proteoglycans, the short receptor form, lacking the large alternatively spliced domain, was not detected as a chondroitin sulfate proteoglycan. We recently showed that phosphacan binds to the neuron‐glia cell adhesion molecule, Ng‐CAM, and we now report that glia expressing RPTPβ adhere and extend processes on substrates coated with Ng‐CAM. After one day in culture, however, the glia retract their processes and often lift off the substrate. Conditioned medium from glial cells, which contains large amounts of phosphacan, inhibits glial adhesion to Ng‐CAM, and depletion of phosphacan from the conditioned medium by immunoadsorption reduces the inhibitory activity. The results show that phosphacan increases dramatically during development, and indicate that secreted forms of RPTPβ can modulate glial cell adhesion and behavior.


Journal of Neurobiology | 2000

Critical and optimal Ig domains for promotion of neurite outgrowth by L1/Ng-CAM

Jeffrey Haspel; David R. Friedlander; Neely Ivgy-May; Sucheta Chickramane; Chan Roonprapunt; Suzhen Chen; Melitta Schachner; Martin Grumet

Mammalian L1 and avian Ng-CAM are homologous neural cell adhesion molecules (CAMs) that promote neurite outgrowth and cell adhesion in most neurons. Previous attempts to map these activities to discrete regions in the CAMs have suggested the involvement of a variety of different domains. However, these studies mainly used bacterially expressed proteins that were much less active on a molar basis than the native molecules. To define regions that are critical for maximal neurite outgrowth, we constructed and tested a panel of eukaryotically expressed proteins containing various extracellular segments of human L1 (hL1) or Ng-CAM. Our results indicate that Ig domains 1-4 of hL1 are critical for homophilic binding and neurite outgrowth; however this segment is less potent than the entire extracellular region. Optimal neurite outgrowth activity was seen with proteins containing all six Ig domains of hL1 or Ng-CAM. The adhesive properties of hL1 fragments correlated tightly with their neurite outgrowth activities, suggesting that these two processes are closely linked. These results suggest that Ig domains 1-4 form a structural cassette responsible for hL1 homophilic binding, while Ig domains 1-6 represent a functional region for optimal promotion of neurite outgrowth in vitro and possibly in vivo.


Neurosurgery | 1997

Tenascin-C expression in the cyst wall and fluid of human brain tumors correlates with angiogenesis

George I. Jallo; David R. Friedlander; Patrick J. Kelly; Jeffrey H. Wisoff; Martin Grumet; David Zagzag

OBJECTIVE Tenascin-C (TN) is an extracellular matrix glycoprotein with a characteristic six-armed structure. The aim of this study was to determine whether the concentration of TN in the cyst fluid of brain tumors can be used as a marker for angiogenesis and glioma grade. METHODS We investigated the expression of TN in the cyst wall and cyst fluid of human brain tumors by immunohistochemistry, immunoprecipitation, and immunoblotting. The tumors included 12 astrocytomas (5 glioblastoma multiforme tumors, 1 anaplastic astrocytoma, 1 low-grade astrocytoma, 4 juvenile pilocytic astrocytomas, and 1 mixed glioma), 2 dysembryoplastic neuroepithelial tumors, 3 craniopharyngiomas, 2 ependymomas, 2 metastatic carcinomas, 3 arachnoid cysts, 1 glial ependymal cyst, and 1 inflammatory cyst. RESULTS We detected no expression of TN in the cyst fluids of the ependymomas, craniopharyngiomas, and nonpilocytic low-grade astrocytoma. By contrast, TN was detected in the cyst fluids of all the other tumors. Results of quantitative immunoblotting using a PhosphorImager unit (Molecular Dynamics, Sunnyvale, CA) revealed that, on average, a 5-fold higher signal was observed in the glioblastoma multiforme tumors as compared with the anaplastic astrocytoma, and a 10-fold higher signal as compared with the mixed glioma, juvenile pilocytic astrocytomas, and dysembryoplastic neuroepithelial tumors. Results of TN immunohistochemistry in the astrocytomas correlated with glioma grade, with stronger staining of the hyperplastic vessels and tumor cells being observed in higher grade gliomas. No TN immunoreactivity was detected in the walls of the ependymomas, arachnoid cysts, and glial ependymal cyst that lack hyperplastic vessels, and minimal TN immunoreactivity was observed in the perivascular gliotic rim of the craniopharyngiomas. No TN was detected in the cyst fluid of these cystic processes. CONCLUSION The presence of TN in and around the hyperplastic vessels and tumor cells present in the cyst walls of astrocytomas and its deposition in the intratumoral cyst fluid in which angiogenic factors have been detected further suggests a role for TN as an angiogenic modulator. These preliminary results suggest that immunodetection of TN in the tumor cyst fluid may indicate tumor type and grade.


Cell Cycle | 2003

Flavopiridol Induces Mitochondrial-Mediated Apoptosis in Murine Glioma GL261 Cells via Release of Cytochrome c and Apoptosis Inducing Factor

Elizabeth W. Newcomb; Cristina Tamasdan; Yolanda Entzminger; Judith Alonso; David R. Friedlander; Diana Crisan; Douglas C. Miller; David Zagzag

Glioblastoma (GBM) remains one of the most challenging solid cancers to treat due to its highly proliferative, angiogenic and invasive nature. Over 80% of adult high-grade astrocytomas show inactivation of the Rb tumor suppressor pathway. Therefore, one possible therapeutic strategy would be to directly modulate cyclin dependent kinase (CDK) activity resulting in inhibition of Rb phosphorylation and cell cycle progression. The small molecule CDK inhibitor, flavopiridol, has demonstrated antitumor activity in human xenograft models and is currently in clinical trials showing efficacy in patients with advanced disease. We have developed an experimental animal model using the murine glioma GL261 cells as a novel in vivo system to screen potential therapeutic agents for GBM. Results of in vitro testing demonstrate that flavopiridol has several relevant clinical characteristics such as its ability to: 1. inhibit cell growth; 2. inhibit cell migration; 3. decrease expression of CDK inhibitor cyclin D1, CDK4 and p21; 4. induce apoptosis in cells with high levels of p27 expression; and 5. decrease the expression of the anti-apoptotic protein Bcl-2. The mechanism by which flavopiridol induces apoptosis is mitochondrial-mediated. We demonstrate by electron microscopy and immunohistochemistry that drug treatment induces mitochondrial damage that was accompanied by the release of cytochrome c into the cytosol together with the translocation of apoptosis inducing factor (AIF) into the nucleus. This finding in murine glioma cells differs markedly from the mechanism of flavopiridol-induced apoptosis cell death reported by us for human glioma cells (Alonso et al., Mol Cancer Ther 2003; 2:139) where drug treatment induced a caspase- and cytochrome c-independent pathway in the absence of detectable damage to mitochondria. In apoptotic human glioma cells only translocation of AIF into the nucleus occurred. Thus, the same drug induces apoptosis inkills different types of glioma cells by different mitochondrial-dependent pathways.


Journal of Neurobiology | 1998

Generation of a radial‐like glial cell line

David R. Friedlander; Perry A. Brittis; Takeshi Sakurai; Bronya Shif; William Wirchansky; Gord Fishell; Martin Grumet

Rat C6 glioma is a cell line that has been used extensively as a model of astroglia. Although this cell line retains many of the properties of developing glia, it does not resemble morphologically the specialized form of glia found embryonically, the radial glia. In experiments designed to study a mutant form of receptor protein tyrosine phosphatase beta, we isolated a subclone of C6 called C6-R which, like radial glia, assumes a highly polarized radial-like morphology in culture. C6-R cells and, to a somewhat lesser extent, C6 cells, express cytoskeletal proteins found in developing astroglia including glial fibrillary acidic protein and RC1. As seen with radial glia, cerebellar granule cell bodies and neurites migrated along radial processes of C6-R cells in culture. Morphological analysis of dye-labeled cells injected into the developing forebrain revealed that a large fraction (approximately 60%) of the C6-R cells in the cortex assumed a radial orientation and about half of these (approximately 30%) made contact with the pial surface. In contrast, the parental C6 cells generally formed aggregates and only displayed a radial alignment when associated with blood vessels. These results suggest that we have generated a stable cell line from C6 glioma which has adopted certain key features of radial glia, including the ability to promote neuronal migration in culture and integrate radially in vivo in response to local cues. This cell line may be particularly useful for studying receptors on radial glia that mediate neuronal migration.

Collaboration


Dive into the David R. Friedlander's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald M. Edelman

The Neurosciences Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge