Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. McClay is active.

Publication


Featured researches published by David R. McClay.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Regulatory gene networks and the properties of the developmental process

Eric H. Davidson; David R. McClay; Leroy Hood

Genomic instructions for development are encoded in arrays of regulatory DNA. These specify large networks of interactions among genes producing transcription factors and signaling components. The architecture of such networks both explains and predicts developmental phenomenology. Although network analysis is yet in its early stages, some fundamental commonalities are already emerging. Two such are the use of multigenic feedback loops to ensure the progressivity of developmental regulatory states and the prevalence of repressive regulatory interactions in spatial control processes. Gene regulatory networks make it possible to explain the process of development in causal terms and eventually will enable the redesign of developmental regulatory circuitry to achieve different outcomes.


Developmental Biology | 1988

Cell lineage conversion in the sea urchin embryo

Charles A. Ettensohn; David R. McClay

The mesoderm of the sea urchin embryo conventionally is divided into two populations of cells; the primary mesenchyme cells (PMCs), which produce the larval skeleton, and the secondary mesenchyme cells (SMCs), which differentiate into a variety of cell types but do not participate in skeletogenesis. In this study we examine the morphogenesis of embryos from which the PMCs have been removed microsurgically. We confirm the observation of Fukushi (1962) that embryos lacking PMCs form a complete skeleton, although in a delayed fashion. We demonstrate by microsurgical and cell marking experiments that the appearance of skeletogenic cells in such PMC-deficient embryos is due exclusively to the conversion of other cells to the PMC phenotype. Time-lapse video recordings of PMC-deficient embryos indicate that the converting cells are a subpopulation of late-ingressing SMCs. The conversion of these cells to the skeletogenic phenotype is accompanied by their de novo expression of cell surface determinants normally unique to PMCs, as shown by binding of wheat germ agglutinin and a PMC-specific monoclonal antibody. Cell transplantation and cell marking experiments have been carried out to determine the number of SMCs that convert when intermediate numbers of PMCs are present in the embryo. These experiments indicate that the number of converting SMCs is inversely proportional to the number of PMCs in the blastocoel. In addition, they show that PMCs and converted SMCs cooperate to produce a skeleton that is correct in both size and configuration. This regulatory system should shed light on the nature of cell-cell interactions that control cell differentiation and on the way in which evolutionary processes modify developmental programs.


Developmental Biology | 1984

Ontogeny of the basal lamina in the sea urchin embryo

Gary M. Wessel; Richard B. Marchase; David R. McClay

The patterns of expression for several extracellular matrix components during development of the sea urchin embryo are described. An immunofluorescence assay was employed on paraffin-sectioned material using (i) polyclonal antibodies against known vertebrate extracellular matrix components: laminin, fibronectin, heparan sulfate proteoglycan, collagen types I, III, and IV; and (ii) monoclonal antibodies generated against sea urchin embryonic components. Most extracellular matrix components studied were found localized within the unfertilized egg in granules (0.5-2.0 micron) distinct from the cortical granules. Fertilization initiated trafficking of the extracellular matrix (ECM) components from within the egg granules to the basal lamina of the developing embryo. The various ECM components arrived within the developing basal lamina at different times, and not all components were unique to the basal lamina. Two ECM components were not found within the egg. These molecules appeared de novo at the mesenchyme blastula stage, and remained specific to the mesoderm through development. The reactivity of antibodies to vertebrate ECM antigens with components of the sea urchin embryo suggests the presence of immunologically similar ECM molecules between the phyla.


Developmental Biology | 1985

Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells

Rachel D. Fink; David R. McClay

At gastrulation the primary mesenchyme cells of sea urchin embryos lose contact with the extracellular hyaline layer and with neighboring blastomeres as they pass through the basal lamina and enter the blastocoel. This delamination process was examined using a cell-binding assay to follow changes in affinities between mesenchyme cells and their three substrates: hyalin, early gastrula cells, and basal lamina. Sixteen-cell-stage micromeres (the precursors of primary mesenchyme cells), and mesenchyme cells obtained from mesenchyme-blastula-stage embryos were used in conjunction with micromeres raised in culture to intermediate ages. The micromeres exhibited an affinity for hyalin, but the affinity was lost at the time of mesenchyme ingression in vivo. Similarly, micromeres had an affinity for monolayers of gastrula cells but the older mesenchyme cells lost much of their cell-to-cell affinity. Presumptive ectoderm and endoderm cells tested against the gastrula monolayers showed no decrease in binding over the same time interval. When micromeres and primary mesenchyme cells were tested against basal lamina preparations, there was an increase in affinity that was associated with developmental time. Presumptive ectoderm and endoderm cells showed no change in affinity over the same interval. Binding measurements using isolated basal laminar components identified fibronectin as one molecule for which the wandering primary mesenchyme cells acquired a specific affinity. The data indicate that as the presumptive mesenchyme cells leave the vegetal plate of the embryo they lose affinities for hyalin and for neighboring cells, and gain an affinity for fibronectin associated with the basal lamina and extracellular matrix that lines the blastocoel.


Cell Cycle | 2006

p38 MAPK in development and cancer.

Cynthia A. Bradham; David R. McClay

p38 is a MAPK that has been shown to induce a wide variety of biological effects in cell culture,in response to a wide range of stimuli. These effects are dependent not only on the stimuli, butalso on the cellular context, resulting in a bewildering array of possibilites1. For example, p38was shown to induce apoptosis in some cells, but prevent apoptosis in others2. Similarly opposedeffects had been observed with respect to cell cycle regulation2. The role of p38 in inflammatorydisease has been appreciated from the beginning, since it was initially identified as an cytokineinducer3. More recently, p38 function has been evaluated in vivo, and through these studies p38has emerged as an important regulator of both embryonic development and cancer progression.This review will focus on these in vivo studies in an effort to provide perspective on p38biologically and as a pharmacological target.


Developmental Biology | 1985

Sequential expression of germ-layer specific molecules in the sea urchin embryo☆

Gary M. Wessel; David R. McClay

Described are two germ-layer specific molecules that appear coincident with the formation of two germ layer cell lineages in the sea urchin embryo. Meso1 is a molecule of 380 kDa that is first detected at the time of primary mesenchyme cell delamination from the wall of the blastula. Endo1 is a molecule of 320 kDa that appears on endoderm cells at the time of archenteron formation a few hours after Meso1 appears. Both antigens are identified by monoclonal antibodies. The appearance of these antigens is described by immunofluorescence microscopy, and quantitative data on their localization has been obtained by ultrastructural immunoelectron microscopy. The synthesis of the molecules has been followed by pulse-chase immunoprecipitation. Meso1 is first expressed in trans Golgi-like saccules, is concentrated in peripheral low electron-dense vesicles, and is found throughout the plasma membrane of the mesenchymal cells and their filopodial extensions. Newly translated Meso1 can first be immunoprecipitated upon differentiation of the mesoderm cell lineage, and pulse-chase studies suggest that the determinant is the result of a post-translational modification. [35S]Methionine pulses early in development followed by a chase to the mesenchyme blastula or prism stage show that at least a portion of the molecule is translated well in advance of the mesenchyme blastula stage. Endo1, in contrast, does not appear to be translated until the onset of gastrulation, just preceding the post-translational expression of the Endo1 determinant. Endo1 is localized to the apical and basolateral cell surfaces of the midgut and hindgut. No label is detected in foregut cells, demonstrating a heterogeneity of cell populations within the endoderm cell lineage corresponding to a difference in morphology. In addition, Endo1 is shown to be the result of new transcription by the embryonic genome. Even though the function of neither molecule is known, together they show the spatial and temporal precision of differentiation that accompanies the formation of germ layers.


Developmental Biology | 2003

Activation of pmar1 controls specification of micromeres in the sea urchin embryo.

Paola Oliveri; Eric H. Davidson; David R. McClay

pmar1 is a transcription factor in the paired class homeodomain family that was identified and found to be transcribed in micromeres beginning at the fourth cleavage of sea urchin development [Dev. Biol. 246 (2002), 209]. Based on in situ data, molecular perturbation studies, and QPCR data, the recently published gene regulatory network (GRN) model for endomesoderm specification [Science 295 (2002) 1669; Dev. Biol. 246 (2002), 162] places pmar1 early in the micromere specification pathway, and upstream of two important micromere induction signals. The goal of this study was to test these three predictions of the network model. A series of embryo chimeras were produced in which pmar1 activity was perturbed in one cell that was transplanted to control hosts. At the fourth cleavage, micromeres bearing altered pmar1 activity were combined with a normal micromereless host embryo. If beta-catenin signaling is blocked, the micromeres remain unspecified and are unable to signal to the host cells. When such beta-catenin-blocked micromeres also express Pmar1, all observed micromere functions are rescued. The rescue includes expression of the primary mesenchyme cell (PMC) differentiation program, expression and execution of the Delta signal to induce secondary mesoderm cell (SMC) specification in macromere progeny, and expression of the early endomesoderm induction signal necessary for full specification of the endoderm. Additionally, Pmar1 expressed mosaically from inserted DNA constructs causes induction of ectopic Endo 16 in adjacent cells, demonstrating further that Pmar1 controls expression of the early endomesoderm induction signal. Based on these experiments, Pmar1 is an important transcription factor necessary for initiating the micromere specification program and for the expression of two inductive signals produced by micromeres. Each of the tests we describe supports the placement and function of Pmar1 in the endomesoderm GRN model.


Developmental Biology | 1987

Gastrulation in the sea urchin embryo requires the deposition of crosslinked collagen within the extracellular matrix

Gary M. Wessel; David R. McClay

This study demonstrates that a collagenous extracellular matrix (ECM) is necessary for gastrulation in the sea urchin embryo. The approach taken was to disrupt collagen processing with two types of agents (a lathyritic agent, beta-aminopropionitrile (BAPN), and three types of proline analogs: dehydroproline, cis-OH-proline, and azetidine carboxylic acid) and to assess the effect on embryogenesis by morphological, immunological, and biochemical criteria. Embryos chronically exposed to either of the agents following fertilization displayed no detectable developmental abnormalities before the mesenchyme blastula stage. These embryos, however, did not gastrulate nor differentiate any further and remained at the mesenchyme blastula stage for at least 36 hr. Upon removal of the agents, the embryos resumed a normal developmental schedule and formed pluteus larvae that were indistinguishable from control embryos. By immunofluorescence studies with monospecific antibodies to type I and type IV collagens it is seen that the lathyritic agent BAPN reduces the accumulation of collagens within the ECM. This effect is confirmed and quantitated by use of an ELISA and by a biochemical determination of OH-proline. When the agents are removed from the inhibited embryos, collagen deposition returns to normal, coincident with gastrulation. Western-blot analysis, using monospecific antibodies to collagen, demonstrates that the effect of the lathyritic agent is to reduce the stability of the extracellular collagen by inhibiting the intra- and intermolecular crosslinking of collagen molecules. BAPN exhibits a dose-dependent effect on morphogenesis, but has no effect on respiration nor on protein synthesis of the embryos throughout development. Although the lathyritic agent affects collagen deposition, it is shown to not affect the expression of other molecules of the ECM, nor that of several cell surface molecules. However, a cell surface molecule that is expressed specifically in the endoderm, termed Endo 1, is not expressed in the inhibited embryos. Endo 1 is expressed after removal of the lathyritic agent and its appearance is coincident with gastrulation in the recovered embryos. These results suggest that a collagenous ECM is important for gastrulation and subsequent differentiation in the sea urchin, but not for earlier developmental processes. In addition, the dependence of Endo 1 expression on the collagenous ECM raises the possibility that this cell surface molecule is in some way regulated by interactions of the presumptive endodermal cells with the ECM.


Developmental Biology | 1982

Sea urchin hyalin: Appearance and function in development

David R. McClay; Rachel D. Fink

Abstract Hyalin, the extracellular matrix protein of sea urchin embryos, was examined by immunofluorescence. Prior to fertilization hyalin was confined to cortical granules. At fertilization hyalin was released from some of the cortical granules as part of the visible fertilization wave. Further hyalin accumulation on the cell surface occurred in the succeeding 2–3 min as additional cortical granules were released. The hyalin fused to form a continuous extraembryonic layer. Regeneration studies showed that new accumulations of hyalin were initiated by ectoderm cells at early gastrulation. Regeneration did not occur prior to this developmental time, nor was there new hyalin accumulation on mesoderm or endoderm cells. Hyalin accumulated only on the apical surface of ectoderm cells. In binding studies, cells of all three germ layers had an affinity for hyalin prior to gastrulation. The affinity was retained by ectoderm and endoderm but was lost by primary mesenchyme cells at the beginning of gastrulation. The loss in affinity was specific for hyalin and occurred at the time when primary mesenchyme cells normally leave the blastoderm to invade the blastocoel.


Development | 2007

FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development

Eric Röttinger; Alexandra Saudemont; Véronique Duboc; Lydia Besnardeau; David R. McClay; Thierry Lepage

The sea urchin embryo is emerging as an attractive model to study morphogenetic processes such as directed migration of mesenchyme cells and cell sheet invagination, but surprisingly, few of the genes regulating these processes have yet been characterized. We present evidence that FGFA, the first FGF family member characterized in the sea urchin, regulates directed migration of mesenchyme cells, morphogenesis of the skeleton and gastrulation during early development. We found that at blastula stages, FGFA and a novel putative FGF receptor are expressed in a pattern that prefigures morphogenesis of the skeletogenic mesoderm and that suggests that FGFA is one of the elusive signals that guide migration of primary mesenchyme cells (PMCs). We first show that fgfA expression is correlated with abnormal migration and patterning of the PMCs following treatments that perturb specification of the ectoderm along the oral-aboral and animal-vegetal axes. Specification of the ectoderm initiated by Nodal is required to restrict fgfA to the lateral ectoderm, and in the absence of Nodal, fgfA is expressed ectopically throughout most of the ectoderm. Inhibition of either FGFA, FGFR1 or FGFR2 function severely affects morphogenesis of the skeleton. Furthermore, inhibition of FGFA and FGFR1 signaling dramatically delays invagination of the archenteron, prevents regionalization of the gut and abrogates formation of the stomodeum. We identified several genes acting downstream of fgfA in these processes, including the transcription factors pea3 and pax2/5/8 and the signaling molecule sprouty in the lateral ectoderm and SM30 and SM50 in the primary mesenchyme cells. This study identifies the FGF signaling pathway as an essential regulator of gastrulation and directed cell migration in the sea urchin embryo and as a key player in the gene regulatory network directing morphogenesis of the skeleton.

Collaboration


Dive into the David R. McClay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric H. Davidson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard B. Marchase

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Shu-Yu Wu

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge