Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. McIlwain is active.

Publication


Featured researches published by David R. McIlwain.


Cold Spring Harbor Perspectives in Biology | 2013

Caspase Functions in Cell Death and Disease

David R. McIlwain; Thorsten Berger; Tak W. Mak

Caspases are a family of endoproteases that provide critical links in cell regulatory networks controlling inflammation and cell death. The activation of these enzymes is tightly controlled by their production as inactive zymogens that gain catalytic activity following signaling events promoting their aggregation into dimers or macromolecular complexes. Activation of apoptotic caspases results in inactivation or activation of substrates, and the generation of a cascade of signaling events permitting the controlled demolition of cellular components. Activation of inflammatory caspases results in the production of active proinflammatory cytokines and the promotion of innate immune responses to various internal and external insults. Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled.


Science | 2012

iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS.

David R. McIlwain; Philipp A. Lang; Thorsten Maretzky; Koichi Hamada; Kazuhito Ohishi; Sathish Kumar Maney; Thorsten Berger; Aditya Murthy; Gordon S. Duncan; Haifeng C. Xu; Karl S. Lang; Dieter Häussinger; Andrew Wakeham; Annick Itie-Youten; Rama Khokha; Pamela S. Ohashi; Carl P. Blobel; Tak W. Mak

TACE Trafficking The cytokine tumor necrosis factor (TNF) is a major driver of inflammation and contributes to the immune pathology seen in a variety of diseases, including inflammatory bowel disease, rheumatoid arthritis, and sepsis. Soluble TNF is produced by cleavage of its ectodomain by the ADAM family metalloprotease, TNFα-converting enzyme (TACE). However, the molecular regulation of TACE is not understood (see the Perspective by Lichtenthaler). Adrain et al. (p. 225) and McIlwain et al. (p. 229) now show that the rhomboid family member iRhom2 interacts with TACE in macrophages and is required for its proper intracellular trafficking and activation. In the absence of iRhom2, TACE was not released from the endoplasmic reticulum, and active protease did not reach the cell surface. Because of an inability to produce TNF, iRhom2-deficient mice were more resistant to lipopolysaccharide-induced septic shock but could not adequately control a Listeria monocytogenes infection. A pseudoprotease is required for the proteolytic cleavage of the proinflammatory cytokine tumor necrosis factor. Innate immune responses are vital for pathogen defense but can result in septic shock when excessive. A key mediator of septic shock is tumor necrosis factor–α (TNFα), which is shed from the plasma membrane after cleavage by the TNFα convertase (TACE). We report that the rhomboid family member iRhom2 interacted with TACE and regulated TNFα shedding. iRhom2 was critical for TACE maturation and trafficking to the cell surface in hematopoietic cells. Gene-targeted iRhom2-deficient mice showed reduced serum TNFα in response to lipopolysaccharide (LPS) and could survive a lethal LPS dose. Furthermore, iRhom2-deficient mice failed to control the replication of Listeria monocytogenes. Our study has identified iRhom2 as a regulator of innate immunity that may be an important target for modulating sepsis and pathogen defense.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay

David R. McIlwain; Qun Pan; Patrick T. Reilly; Andrew J. Elia; Susan McCracken; Andrew Wakeham; Annick Itie-Youten; Benjamin J. Blencowe; Tak W. Mak

Smg1 is a PI3K-related kinase (PIKK) associated with multiple cellular functions, including DNA damage responses, telomere maintenance, and nonsense-mediated mRNA decay (NMD). NMD degrades transcripts that harbor premature termination codons (PTCs) as a result of events such as mutation or alternative splicing (AS). Recognition of PTCs during NMD requires the action of the Upstream frameshift protein Upf1, which must first be phosphorylated by Smg1. However, the physiological function of mammalian Smg1 is not known. By using a gene-trap model of Smg1 deficiency, we show that this kinase is essential for mouse embryogenesis such that Smg1 loss is lethal at embryonic day 8.5. High-throughput RNA sequencing (RNA-Seq) of RNA from cells of Smg1-deficient embryos revealed that Smg1 depletion led to pronounced accumulation of PTC-containing splice variant transcripts from approximately 9% of genes predicted to contain AS events capable of eliciting NMD. Among these genes are those involved in splicing itself, as well as genes not previously known to be subject to AS-coupled NMD, including several involved in transcription, intracellular signaling, membrane dynamics, cell death, and metabolism. Our results demonstrate a critical role for Smg1 in early mouse development and link the loss of this NMD factor to major and widespread changes in the mammalian transcriptome.


Proceedings of the National Academy of Sciences of the United States of America | 2013

iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding

Thorsten Maretzky; David R. McIlwain; Priya Darshinee A. Issuree; Xue Li; Jordi Malapeira; Sadaf Amin; Philipp A. Lang; Tak W. Mak; Carl P. Blobel

Protein ectodomain shedding by ADAM17 (a disintegrin and metalloprotease 17), a principal regulator of EGF-receptor signaling and TNFα release, is rapidly and posttranslationally activated by a variety of signaling pathways, and yet little is known about the underlying mechanism. Here, we report that inactive rhomboid protein 2 (iRhom2), recently identified as essential for the maturation of ADAM17 in hematopoietic cells, is crucial for the rapid activation of the shedding of some, but not all substrates of ADAM17. Mature ADAM17 is present in mouse embryonic fibroblasts (mEFs) lacking iRhom2, and yet ADAM17 is unable to support stimulated shedding of several of its substrates, including heparin-binding EGF and Kit ligand 2 in this context. Stimulated shedding of other ADAM17 substrates, such as TGFα, is not affected in iRhom2−/− mEFs but can be strongly reduced by treating iRhom2−/− mEFs with siRNA against iRhom1. Activation of heparin-binding EGF or Kit ligand 2 shedding by ADAM17 in iRhom2−/− mEFs can be rescued by wild-type iRhom2 but not by iRhom2 lacking its N-terminal cytoplasmic domain. The requirement for the cytoplasmic domain of iRhom2 for stimulated shedding by ADAM17 may help explain why the cytoplasmic domain of ADAM17 is not required for stimulated shedding. The functional relevance of iRhom2 in regulating shedding of EGF receptor (EGFR) ligands is established by a lack of lysophasphatidic acid/ADAM17/EGFR-dependent crosstalk with ERK1/2 in iRhom2−/− mEFs, and a significant reduction of FGF7/ADAM17/EGFR-stimulated migration of iRhom2−/− keratinocytes. Taken together, these findings uncover functions for iRhom2 in the regulation of EGFR signaling and in controlling the activation and substrate selectivity of ADAM17-dependent shedding events.


Journal of Clinical Investigation | 2013

iRHOM2 is a critical pathogenic mediator of inflammatory arthritis

Priya Darshinee A. Issuree; Thorsten Maretzky; David R. McIlwain; Sebastien Monette; Xiaoping Qing; Philipp A. Lang; Steven L. Swendeman; Kyung-Hyun Park-Min; Nikolaus B. Binder; George D. Kalliolias; Anna Yarilina; Keisuke Horiuchi; Lionel B. Ivashkiv; Tak W. Mak; Jane E. Salmon; Carl P. Blobel

iRHOM2, encoded by the gene Rhbdf2, regulates the maturation of the TNF-α convertase (TACE), which controls shedding of TNF-α and its biological activity in vivo. TACE is a potential target to treat TNF-α-dependent diseases, such as rheumatoid arthritis, but there are concerns about potential side effects, because TACE also protects the skin and intestinal barrier by activating EGFR signaling. Here we report that inactivation of Rhbdf2 allows tissue-specific regulation of TACE by selectively preventing its maturation in immune cells, without affecting its homeostatic functions in other tissues. The related iRHOM1, which is widely expressed, except in hematopoietic cells, supported TACE maturation and shedding of the EGFR ligand TGF-α in Rhbdf2-deficient cells. Remarkably, mice lacking Rhbdf2 were protected from K/BxN inflammatory arthritis to the same extent as mice lacking TACE in myeloid cells or Tnfa-deficient mice. In probing the underlying mechanism, we found that two main drivers of K/BxN arthritis, complement C5a and immune complexes, stimulated iRHOM2/TACE-dependent shedding of TNF-α in mouse and human cells. These data demonstrate that iRHOM2 and myeloid-expressed TACE play a critical role in inflammatory arthritis and indicate that iRHOM2 is a potential therapeutic target for selective inactivation of TACE in myeloid cells.


Cold Spring Harbor Perspectives in Biology | 2015

Caspase Functions in Cell Death and Disease: Figure 1.

David R. McIlwain; Thorsten Berger; Tak W. Mak

Caspases are a family of endoproteases that provide critical links in cell regulatory networks controlling inflammation and cell death. The activation of these enzymes is tightly controlled by their production as inactive zymogens that gain catalytic activity following signaling events promoting their aggregation into dimers or macromolecular complexes. Activation of apoptotic caspases results in inactivation oractivation of substrates, and the generation of a cascade of signaling events permitting the controlled demolition of cellular components. Activation of inflammatory caspases results in the production of active proinflammatory cytokines and the promotion of innate immune responses to various internal and external insults. Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled.


Proceedings of the National Academy of Sciences of the United States of America | 2015

iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling.

Xue Li; Thorsten Maretzky; Gisela Weskamp; Sebastien Monette; Xiaoping Qing; Priya Darshinee A. Issuree; Howard C. Crawford; David R. McIlwain; Tak W. Mak; Jane E. Salmon; Carl P. Blobel

Significance The skin and intestinal barrier are controlled by signaling scissors, termed ADAM17 (a disintegrin and metalloprotease 17), that reside in the membrane on the surface of cells. The main purpose of these signaling scissors is to liberate growth factors from their membrane anchor, allowing them to activate their receptors, including the epidermal growth factor receptor (EGFR). The ADAM17/EGFR signaling axis is tightly regulated, yet little is known about the underlying mechanism. Here we use genetic, cell biological, and biochemical approaches to identify two membrane proteins termed iRhoms 1 and 2 (inactive Rhomboid-like proteins) as crucial upstream regulators of ADAM17-dependent EGFR signaling. This uncovers the iRhoms as attractive novel targets to treat ADAM17/EGFR-dependent diseases such as cancer. The metalloproteinase ADAM17 (a disintegrin and metalloprotease 17) controls EGF receptor (EGFR) signaling by liberating EGFR ligands from their membrane anchor. Consequently, a patient lacking ADAM17 has skin and intestinal barrier defects that are likely caused by lack of EGFR signaling, and Adam17−/− mice die perinatally with open eyes, like Egfr−/− mice. A hallmark feature of ADAM17-dependent EGFR ligand shedding is that it can be rapidly and posttranslationally activated in a manner that requires its transmembrane domain but not its cytoplasmic domain. This suggests that ADAM17 is regulated by other integral membrane proteins, although much remains to be learned about the underlying mechanism. Recently, inactive Rhomboid 2 (iRhom2), which has seven transmembrane domains, emerged as a molecule that controls the maturation and function of ADAM17 in myeloid cells. However, iRhom2−/− mice appear normal, raising questions about how ADAM17 is regulated in other tissues. Here we report that iRhom1/2−/− double knockout mice resemble Adam17−/− and Egfr−/− mice in that they die perinatally with open eyes, misshapen heart valves, and growth plate defects. Mechanistically, we show lack of mature ADAM17 and strongly reduced EGFR phosphorylation in iRhom1/2−/− tissues. Finally, we demonstrate that iRhom1 is not essential for mouse development but regulates ADAM17 maturation in the brain, except in microglia, where ADAM17 is controlled by iRhom2. These results provide genetic, cell biological, and biochemical evidence that a principal function of iRhoms1/2 during mouse development is to regulate ADAM17-dependent EGFR signaling, suggesting that iRhoms1/2 could emerge as novel targets for treatment of ADAM17/EGFR-dependent pathologies.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Involvement of Toso in activation of monocytes, macrophages, and granulocytes

Karl S. Lang; Philipp A. Lang; Andreas Meryk; Aleksandra A. Pandyra; Louis-Martin Boucher; Vitaly I. Pozdeev; Michael W. Tusche; Joachim R. Göthert; Jillian Haight; Andrew Wakeham; Annick You-Ten; David R. McIlwain; Katja Merches; Vishal Khairnar; Mike Recher; Garry P. Nolan; Yasumichi Hitoshi; Pauline Funkner; Alexander A. Navarini; Admar Verschoor; Namir Shaabani; Nadine Honke; Linda Penn; Pamela S. Ohashi; Dieter Häussinger; Kyeong-Hee Lee; Tak W. Mak

Rapid activation of immune responses is necessary for antibacterial defense, but excessive immune activation can result in life-threatening septic shock. Understanding how these processes are balanced may provide novel therapeutic potential in treating inflammatory disease. Fc receptors are crucial for innate immune activation. However, the role of the putative Fc receptor for IgM, known as Toso/Faim3, has to this point been unclear. In this study, we generated Toso-deficient mice and used them to uncover a critical regulatory function of Toso in innate immune activation. Development of innate immune cells was intact in the absence of Toso, but Toso-deficient neutrophils exhibited more reactive oxygen species production and reduced phagocytosis of pathogens compared with controls. Cytokine production was also decreased in Toso−/− mice compared with WT animals, rendering them resistant to septic shock induced by lipopolysaccharide. However, Toso−/− mice also displayed limited cytokine production after infection with the bacterium Listeria monocytogenes that was correlated with elevated presence of Listeria throughout the body. Accordingly, Toso−/− mice succumbed to infections of L. monocytogenes, whereas WT mice successfully eliminated the infection. Taken together, our data reveal Toso to be a unique regulator of innate immune responses during bacterial infection and septic shock.


Science Signaling | 2015

Deletions in the cytoplasmic domain of iRhom1 and iRhom2 promote shedding of the TNF receptor by the protease ADAM17.

Sathish Kumar Maney; David R. McIlwain; Robin Polz; Aleksandra A. Pandyra; Balamurugan Sundaram; Dorit Wolff; Kazuhito Ohishi; Thorsten Maretzky; Matthew A. Brooke; Astrid Evers; Ananda Ayyappan Jaguva Vasudevan; Nima Aghaeepour; Jürgen Scheller; Carsten Münk; Dieter Häussinger; Tak W. Mak; Garry P. Nolan; David P. Kelsell; Carl P. Blobel; Karl S. Lang; Philipp A. Lang

Without the N terminus, iRhom proteins cannot properly limit ADAM17 activity, resulting in impaired cancer cell death. Tumor susceptibility from truncated rhomboids Tumor necrosis factor (TNF) is an extracellular signal that can trigger cell death through its receptor. The protease ADAM17 has a dual role in regulating TNF signaling: ADAM17 promotes TNF signaling by cleaving and releasing TNF from the cell surface, and ADAM17 dampens TNF signaling by cleaving and releasing TNF receptors from the surface. The rhomboid proteins iRhom1 and iRhom2, which lack catalytic activity, mediate the maturation and delivery of ADAM17 to the cell surface. Maney et al. found that deletions in the cytoplasmic region of iRhom1 or iRhom2, which mimic mutations in the N-terminal cytoplasmic tail of iRhom2 in some patients with susceptibility to esophageal cancer, reduced TNF signaling, despite increasing ADAM17 activity. Expression of N-terminally truncated iRhoms in mouse fibrosarcoma cells increased the abundance of ADAM17 at the surface and the subsequent shedding of the TNF receptors, thereby suppressing TNF-induced intracellular signaling and cell death. The protease ADAM17 (a disintegrin and metalloproteinase 17) catalyzes the shedding of various transmembrane proteins from the surface of cells, including tumor necrosis factor (TNF) and its receptors. Liberation of TNF receptors (TNFRs) from cell surfaces can dampen the cellular response to TNF, a cytokine that is critical in the innate immune response and promotes programmed cell death but can also promote sepsis. Catalytically inactive members of the rhomboid family of proteases, iRhom1 and iRhom2, mediate the intracellular transport and maturation of ADAM17. Using a genetic screen, we found that the presence of either iRhom1 or iRhom2 lacking part of their extended amino-terminal cytoplasmic domain (herein referred to as ΔN) increases ADAM17 activity, TNFR shedding, and resistance to TNF-induced cell death in fibrosarcoma cells. Inhibitors of ADAM17, but not of other ADAM family members, prevented the effects of iRhom-ΔN expression. iRhom1 and iRhom2 were functionally redundant, suggesting a conserved role for the iRhom amino termini. Cells from patients with a dominantly inherited cancer susceptibility syndrome called tylosis with esophageal cancer (TOC) have amino-terminal mutations in iRhom2. Keratinocytes from TOC patients exhibited increased TNFR1 shedding compared with cells from healthy donors. Our results explain how loss of the amino terminus in iRhom1 and iRhom2 impairs TNF signaling, despite enhancing ADAM17 activity, and may explain how mutations in the amino-terminal region contribute to the cancer predisposition syndrome TOC.


Cell Death & Differentiation | 2013

Reactive oxygen species delay control of lymphocytic choriomeningitis virus.

Philipp A. Lang; Haifeng C. Xu; Melanie Grusdat; David R. McIlwain; Aleksandra A. Pandyra; Isaac S. Harris; Namir Shaabani; Nadine Honke; S Kumar Maney; Elisabeth Lang; Vitaly I. Pozdeev; Mike Recher; B Odermatt; D Brenner; Dieter Häussinger; Pamela S. Ohashi; H Hengartner; R M Zinkernagel; Tak W. Mak; Karl S. Lang

Cluster of differentiation (CD)8+ T cells are like a double edged sword during chronic viral infections because they not only promote virus elimination but also induce virus-mediated immunopathology. Elevated levels of reactive oxygen species (ROS) have been reported during virus infections. However, the role of ROS in T-cell-mediated immunopathology remains unclear. Here we used the murine lymphocytic choriomeningitis virus to explore the role of ROS during the processes of virus elimination and induction of immunopathology. We found that virus infection led to elevated levels of ROS producing granulocytes and macrophages in virus-infected liver and spleen tissues that were triggered by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Lack of the regulatory subunit p47phox of the NADPH oxidase diminished ROS production in these cells. While CD8+ T cells exhibited ROS production that was independent of NADPH oxidase expression, survival and T-cell function was elevated in p47phox-deficient (Ncf1−/−) mice. In the absence of p47phox, enhanced T-cell immunity promoted virus elimination and blunted corresponding immunopathology. In conclusion, we find that NADPH-mediated production of ROS critically impairs the immune response, impacting elimination of virus and outcome of liver cell damage.

Collaboration


Dive into the David R. McIlwain's collaboration.

Top Co-Authors

Avatar

Tak W. Mak

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Carl P. Blobel

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Philipp A. Lang

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Thorsten Maretzky

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl S. Lang

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane E. Salmon

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haifeng C. Xu

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge