Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thorsten Maretzky is active.

Publication


Featured researches published by Thorsten Maretzky.


Molecular and Cellular Biology | 2005

L1 Is Sequentially Processed by Two Differently Activated Metalloproteases and Presenilin/γ-Secretase and Regulates Neural Cell Adhesion, Cell Migration, and Neurite Outgrowth

Thorsten Maretzky; Marc Schulte; Andreas Ludwig; Stefan Rose-John; Carl P. Blobel; Dieter Hartmann; Peter Altevogt; Paul Saftig; Karina Reiss

ABSTRACT The immunoglobulin superfamily recognition molecule L1 plays important functional roles in the developing and adult nervous system. Metalloprotease-mediated cleavage of this adhesion molecule has been shown to stimulate cellular migration and neurite outgrowth. We demonstrate here that L1 cleavage is mediated by two distinct members of the disintegrin and metalloprotease family, ADAM10 and ADAM17. This cleavage is differently regulated and leads to the generation of a membrane bound C-terminal fragment, which is further processed through γ-secretase activity. Pharmacological approaches with two hydroxamate-based inhibitors with different preferences in blocking ADAM10 and ADAM17, as well as loss of function and gain of function studies in murine embryonic fibroblasts, showed that constitutive shedding of L1 is mediated by ADAM10 while phorbol ester stimulation or cholesterol depletion led to ADAM17-mediated L1 cleavage. In contrast, N-methyl-d-aspartate treatment of primary neurons stimulated ADAM10-mediated L1 shedding. Both proteases were able to affect L1-mediated adhesion and haptotactic migration of neuronal cells. In particular, both proteases were involved in L1-dependent neurite outgrowth of cerebellar neurons. Thus, our data identify ADAM10 and ADAM17 as differentially regulated L1 membrane sheddases, both critically affecting the physiological functions of this adhesion protein.


Science | 2012

iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS.

David R. McIlwain; Philipp A. Lang; Thorsten Maretzky; Koichi Hamada; Kazuhito Ohishi; Sathish Kumar Maney; Thorsten Berger; Aditya Murthy; Gordon S. Duncan; Haifeng C. Xu; Karl S. Lang; Dieter Häussinger; Andrew Wakeham; Annick Itie-Youten; Rama Khokha; Pamela S. Ohashi; Carl P. Blobel; Tak W. Mak

TACE Trafficking The cytokine tumor necrosis factor (TNF) is a major driver of inflammation and contributes to the immune pathology seen in a variety of diseases, including inflammatory bowel disease, rheumatoid arthritis, and sepsis. Soluble TNF is produced by cleavage of its ectodomain by the ADAM family metalloprotease, TNFα-converting enzyme (TACE). However, the molecular regulation of TACE is not understood (see the Perspective by Lichtenthaler). Adrain et al. (p. 225) and McIlwain et al. (p. 229) now show that the rhomboid family member iRhom2 interacts with TACE in macrophages and is required for its proper intracellular trafficking and activation. In the absence of iRhom2, TACE was not released from the endoplasmic reticulum, and active protease did not reach the cell surface. Because of an inability to produce TNF, iRhom2-deficient mice were more resistant to lipopolysaccharide-induced septic shock but could not adequately control a Listeria monocytogenes infection. A pseudoprotease is required for the proteolytic cleavage of the proinflammatory cytokine tumor necrosis factor. Innate immune responses are vital for pathogen defense but can result in septic shock when excessive. A key mediator of septic shock is tumor necrosis factor–α (TNFα), which is shed from the plasma membrane after cleavage by the TNFα convertase (TACE). We report that the rhomboid family member iRhom2 interacted with TACE and regulated TNFα shedding. iRhom2 was critical for TACE maturation and trafficking to the cell surface in hematopoietic cells. Gene-targeted iRhom2-deficient mice showed reduced serum TNFα in response to lipopolysaccharide (LPS) and could survive a lethal LPS dose. Furthermore, iRhom2-deficient mice failed to control the replication of Listeria monocytogenes. Our study has identified iRhom2 as a regulator of innate immunity that may be an important target for modulating sepsis and pathogen defense.


Cell Death & Differentiation | 2007

ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death

Marc Schulte; Karina Reiss; M Lettau; Thorsten Maretzky; Andreas Ludwig; Dieter Hartmann; B. De Strooper; O Janssen; Paul Saftig

The apoptosis-inducing Fas ligand (FasL) is a type II transmembrane protein that is involved in the downregulation of immune reactions by activation-induced cell death (AICD) as well as in T cell-mediated cytotoxicity. Proteolytic cleavage leads to the generation of membrane-bound N-terminal fragments and a soluble FasL (sFasL) ectodomain. sFasL can be detected in the serum of patients with dysregulated inflammatory diseases and is discussed to affect Fas-FasL-mediated apoptosis. Using pharmacological approaches in 293T cells, in vitro cleavage assays as well as loss and gain of function studies in murine embryonic fibroblasts (MEFs), we demonstrate that the disintegrin and metalloprotease ADAM10 is critically involved in the shedding of FasL. In primary human T cells, FasL shedding is significantly reduced after inhibition of ADAM10. The resulting elevated FasL surface expression is associated with increased killing capacity and an increase of T cells undergoing AICD. Overall, our findings suggest that ADAM10 represents an important molecular modulator of FasL-mediated cell death.


Journal of Cell Science | 2010

ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site

Sylvain M. Le Gall; Thorsten Maretzky; Priya Darshinee A. Issuree; Xiaoda Niu; Karina Reiss; Paul Saftig; Rama Khokha; Daniel Lundell; Carl P. Blobel

Protein ectodomain shedding is crucial for cell–cell interactions because it controls the bioavailability of soluble tumor necrosis factor-α (TNFα) and ligands of the epidermal growth factor (EGF) receptor, and the release of many other membrane proteins. Various stimuli can rapidly trigger ectodomain shedding, yet much remains to be learned about the identity of the enzymes that respond to these stimuli and the mechanisms underlying their activation. Here, we demonstrate that the membrane-anchored metalloproteinase ADAM17, but not ADAM10, is the sheddase that rapidly responds to the physiological signaling pathways stimulated by thrombin, EGF, lysophosphatidic acid and TNFα. Stimulation of ADAM17 is swift and quickly reversible, and does not depend on removal of its inhibitory pro-domain by pro-protein convertases, or on dissociation of an endogenous inhibitor, TIMP3. Moreover, activation of ADAM17 by physiological stimuli requires its transmembrane domain, but not its cytoplasmic domain, arguing against inside–out signaling via cytoplasmic phosphorylation as the underlying mechanism. Finally, experiments with the tight binding hydroxamate inhibitor DPC333, used here to probe the accessibility of the active site of ADAM17, demonstrate that this inhibitor can quickly bind to ADAM17 in stimulated, but not quiescent cells. These findings support the concept that activation of ADAM17 involves a rapid and reversible exposure of its catalytic site.


ACS Chemical Biology | 2014

Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

Helgi I. Ingólfsson; Pratima Thakur; Karl F. Herold; E. Ashley Hobart; Nicole Ramsey; Xavier Periole; Djurre H. de Jong; Martijn Zwama; Duygu Yilmaz; Katherine Hall; Thorsten Maretzky; Hugh C. Hemmings; Carl P. Blobel; Siewert J. Marrink; Armagan Kocer; Jon T. Sack; Olaf S. Andersen

A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.


Nature Communications | 2011

Migration of growth factor-stimulated epithelial and endothelial cells depends on EGFR transactivation by ADAM17

Thorsten Maretzky; Astrid Evers; Wenhui Zhou; Steven L. Swendeman; Pui-Mun Wong; Shahin Rafii; Karina Reiss; Carl P. Blobel

The fibroblast growth factor receptor 2-IIIb (FGFR2b) and the vascular endothelial growth factor receptor 2 (VEGFR2) are tyrosine kinases that can promote cell migration and proliferation and have important roles in embryonic development and cancer. Here we show that FGF7/FGFR2b-dependent activation of epidermal growth factor receptor (EGFR)/ERK1/2 signalling and cell migration in epithelial cells require stimulation of the membrane-anchored metalloproteinase ADAM17 and release of heparin-binding epidermal growth factor (HB-EGF). Moreover, VEGF-A/VEGFR2-induced migration of human umbilical vein endothelial cells also depends on EGFR/ERK1/2 signalling and shedding of the ADAM17 substrate HB-EGF. The pathway used by the FGF7/FGFR2b signalling axis to stimulate shedding of substrates of ADAM17, including ligands of the EGFR, involves Src, p38 mitogen-activated protein-kinase and PI3K, but does not require the cytoplasmic domain of ADAM17. Based on these findings, ADAM17 emerges as a central component in a triple membrane-spanning pathway between FGFR2b or VEGFR2 and EGFR/ERK1/2 that is required for cell migration in keratinocytes and presumably also in endothelial cells.


Journal of Biological Chemistry | 2006

Regulated ADAM10-dependent Ectodomain Shedding of γ-Protocadherin C3 Modulates Cell-Cell Adhesion

Karina Reiss; Thorsten Maretzky; Ingrid G. Haas; Marc Schulte; Andreas Ludwig; Marcus Frank; Paul Saftig

γ-Protocadherins (Pcdhγ) are type I transmembrane proteins, which are most notably expressed in the nervous system. They are enriched at synapses and involved in synapse formation, specification, and maintenance. In this study, we show that Pcdhγ C3 and Pcdhγ B4 are specifically cleaved within their ectodomains by the disintegrin and metalloprotease ADAM10. Analysis of ADAM10-deficient fibroblasts and embryos, inhibitor studies, as well as RNA interference-mediated down-regulation demonstrated that ADAM10 is not only responsible for the constitutive but also for the regulated shedding of these proteins in fibroblasts and in neuronal cells. In contrast to N-cadherin shedding, which was activated by N-methyl-d-aspartic acid receptor activation in neuronal cells, Pcdhγ shedding was induced by α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrate stimulation, suggesting differential regulation mechanisms of cadherin-mediated functions at synapses. Cell aggregation assays in the presence or absence of metalloprotease inhibitors strongly suggest that the ectodomain shedding events modulate the cell adhesion role of Pcdhγ. The identification of ADAM10 as the protease responsible for constitutive and regulated Pcdhγ shedding may therefore provide new insight into the regulation of Pcdhγ functions.


Proceedings of the National Academy of Sciences of the United States of America | 2013

iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding

Thorsten Maretzky; David R. McIlwain; Priya Darshinee A. Issuree; Xue Li; Jordi Malapeira; Sadaf Amin; Philipp A. Lang; Tak W. Mak; Carl P. Blobel

Protein ectodomain shedding by ADAM17 (a disintegrin and metalloprotease 17), a principal regulator of EGF-receptor signaling and TNFα release, is rapidly and posttranslationally activated by a variety of signaling pathways, and yet little is known about the underlying mechanism. Here, we report that inactive rhomboid protein 2 (iRhom2), recently identified as essential for the maturation of ADAM17 in hematopoietic cells, is crucial for the rapid activation of the shedding of some, but not all substrates of ADAM17. Mature ADAM17 is present in mouse embryonic fibroblasts (mEFs) lacking iRhom2, and yet ADAM17 is unable to support stimulated shedding of several of its substrates, including heparin-binding EGF and Kit ligand 2 in this context. Stimulated shedding of other ADAM17 substrates, such as TGFα, is not affected in iRhom2−/− mEFs but can be strongly reduced by treating iRhom2−/− mEFs with siRNA against iRhom1. Activation of heparin-binding EGF or Kit ligand 2 shedding by ADAM17 in iRhom2−/− mEFs can be rescued by wild-type iRhom2 but not by iRhom2 lacking its N-terminal cytoplasmic domain. The requirement for the cytoplasmic domain of iRhom2 for stimulated shedding by ADAM17 may help explain why the cytoplasmic domain of ADAM17 is not required for stimulated shedding. The functional relevance of iRhom2 in regulating shedding of EGF receptor (EGFR) ligands is established by a lack of lysophasphatidic acid/ADAM17/EGFR-dependent crosstalk with ERK1/2 in iRhom2−/− mEFs, and a significant reduction of FGF7/ADAM17/EGFR-stimulated migration of iRhom2−/− keratinocytes. Taken together, these findings uncover functions for iRhom2 in the regulation of EGFR signaling and in controlling the activation and substrate selectivity of ADAM17-dependent shedding events.


Journal of Clinical Investigation | 2013

iRHOM2 is a critical pathogenic mediator of inflammatory arthritis

Priya Darshinee A. Issuree; Thorsten Maretzky; David R. McIlwain; Sebastien Monette; Xiaoping Qing; Philipp A. Lang; Steven L. Swendeman; Kyung-Hyun Park-Min; Nikolaus B. Binder; George D. Kalliolias; Anna Yarilina; Keisuke Horiuchi; Lionel B. Ivashkiv; Tak W. Mak; Jane E. Salmon; Carl P. Blobel

iRHOM2, encoded by the gene Rhbdf2, regulates the maturation of the TNF-α convertase (TACE), which controls shedding of TNF-α and its biological activity in vivo. TACE is a potential target to treat TNF-α-dependent diseases, such as rheumatoid arthritis, but there are concerns about potential side effects, because TACE also protects the skin and intestinal barrier by activating EGFR signaling. Here we report that inactivation of Rhbdf2 allows tissue-specific regulation of TACE by selectively preventing its maturation in immune cells, without affecting its homeostatic functions in other tissues. The related iRHOM1, which is widely expressed, except in hematopoietic cells, supported TACE maturation and shedding of the EGFR ligand TGF-α in Rhbdf2-deficient cells. Remarkably, mice lacking Rhbdf2 were protected from K/BxN inflammatory arthritis to the same extent as mice lacking TACE in myeloid cells or Tnfa-deficient mice. In probing the underlying mechanism, we found that two main drivers of K/BxN arthritis, complement C5a and immune complexes, stimulated iRHOM2/TACE-dependent shedding of TNF-α in mouse and human cells. These data demonstrate that iRHOM2 and myeloid-expressed TACE play a critical role in inflammatory arthritis and indicate that iRHOM2 is a potential therapeutic target for selective inactivation of TACE in myeloid cells.


Journal of Investigative Dermatology | 2008

ADAM10-Mediated E-Cadherin Release Is Regulated by Proinflammatory Cytokines and Modulates Keratinocyte Cohesion in Eczematous Dermatitis

Thorsten Maretzky; Felix Scholz; Bente Köten; Ehrhardt Proksch; Paul Saftig; Karina Reiss

Acute eczema is an inflammatory skin disease characterized by the formation of small intraepidermal blisters, reduction of the adhesion molecule E-cadherin from the keratinocyte surface, and impaired keratinocyte cohesion. Here, we reveal that the disintegrin and metalloprotease ADAM10 is critically involved in regulating E-cadherin cell-surface expression in cultured primary human keratinocytes and in diseased human skin. Proinflammatory cytokines, transforming growth factor-beta, and lipopolysaccharide led to increased release of soluble E-cadherin by activating mitogen-activated protein kinase signaling in cultured keratinocytes. Moreover, these stimuli decreased the amount of pro-ADAM10 and increased the level of the active protease, leading to loss of E-cadherin from the cell surface and decreased keratinocyte cohesion. In situ examination and immunoblot analyses of E-cadherin and ADAM10 expression in lesional skin of eczema revealed that the reduction of E-cadherin expression in areas of blister formation closely correlated with increased level of ADAM10 expression and elevated E-cadherin shedding. Our data suggest that ADAM10-mediated E-cadherin proteolysis leads to the impaired cohesion of keratinocytes observed in eczematous dermatitis and provide previously unreported insights into the understanding of the molecular mechanisms involved in inflammatory diseases with loss in epithelial integrity.

Collaboration


Dive into the Thorsten Maretzky's collaboration.

Top Co-Authors

Avatar

Carl P. Blobel

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tak W. Mak

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane E. Salmon

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Astrid Evers

Hospital for Special Surgery

View shared research outputs
Researchain Logo
Decentralizing Knowledge